
Schema Evolution in SQL-99 and Commercial
(Object-)Relational DBMS

Can Türker

Swiss Federal Institute of Technology (ETH) Zurich
Institute of Information Systems, ETH Zentrum

CH–8092 Zurich, Switzerland
tuerker@inf.ethz.ch

1 Introduction

A database schema denotes the description of the structure and behavior of a
database. Straightforwardly, (database) schema evolution refers to changes of the
database schema that occur during the lifetime of the corresponding database. It
particularly refers to changes of schema elements already stored in the database.

The information about a database schema is stored in the schema catalog.
Data stored in these catalogs is referred to as meta-data. In this sense, schema
evolution could be seen as a change of the content of the schema catalog.

In an object-relational database model, such as proposed in SQL-99 [Int99],
a database schema, among others, consists of the following elements:

– types, tables, and views,
– subtype and subtable relationships,
– constraints and assertions,
– functions, stored procedures, and triggers, and
– roles and privileges.

Thus more precisely, schema evolution can be defined as the creation, modifica-
tion, and removal of such kinds of schema elements.

Although schema evolution is a well-known and partially well-studied topic,
an overview and comparison of schema evolution language constructs provided in
the SQL standard as well as in commercial database management systems is still
missing. This survey paper intends to fill this gap. First, in Section 2, we give an
overview of schema evolution operations supported by the new SQL standard,
called SQL-99 [Int99]. Thereafter, in Section 3, we compare major commercial
(object-)relational database management systems with respect to the support
of these operations and others disregarded in SQL-99. Finally, we conclude the
paper with some remarks on open schema evolution issues neglected in SQL-99
as well as in the current implementations of commercial database management
systems.

2 Schema Evolution in SQL-99

Before we present the schema evolution language constructs provided in SQL-99
[Int99], we briefly introduce the basic notions and concepts of SQL-99.

H. Balsters, B. de Brock, and S. Conrad (Eds.): FoMLaDO/DEMM 2000, LNCS 2065, pp. 1–32, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 C. Türker

2.1 Basic Schema Elements

The main concept for representing data in SQL-99 is the concept of a table,
which is made up by a set of columns and rows. A table is associated with a
schema and an instance:

– A schema of a table specifies the name of the table, the name of each column,
and the domains (data types) associated with the columns. A domain is
typically referred to by a domain name and has a set of associated values.
Examples for basic domains (built-in data types) in SQL-99 are INTEGER,
REAL, NUMERIC, CHAR, or DATE.

– An instance of a table schema, called table, is a set of rows where each row
has the same structure as defined in the table schema, that is, each row the
same number of columns and the values of the columns are taken from the
corresponding domain.

A table is either a base table or a derived table. A derived table is a table that is
derived from one or more other tables by the evaluation of a query expression.
A view is a named derived table.

Besides the standard built-in data types, SQL-99 provides a row type con-
structor, an array type constructor and a reference type constructor. A row type
constructor is used to define a column consisting of a number of fields. Any data
type can be assigned to a field. The array type constructor is also applicable
to any data type, whereas the applicability of the reference type constructor is
restricted to user-defined types only.

A user-defined type is a named data type. SQL-99 distinguishes two kinds
of user-defined types: (1) distinct types which are copies of predefined data
types and (2) structured types which define a number of attributes and method
specifications. Every attribute is associated with a data type, which itself can
also be a user-defined type.

Structured types can be set into a subtype relationship. A subtype implic-
itly inherits the attributes and method specifications from its supertype. Every
structured type may have at most one direct supertype. That is, SQL-99 does
not support multiple inheritance.

A table that is created based on a structured type is called a typed table.
Typed tables can be organized within a table hierarchy. A table can be a subtable
of at most one direct supertable. All rows of a subtable are implicitly contained
in all supertables of that table. Analogously to (base) tables, views can be typed
and organized in view hierarchies.

A table column may rely on a built-in data type, row type, user-defined type,
reference type, or collection type. The same holds for an attribute of a structured
type.

SQL-99 furthermore supports the following concepts:

– Domains are named sets of values that are associated with a default value
and a set of domain constraints.

– Assertions are named constraints that may relate to the content of individual
rows of a table, to the entire content of a table, or to the contents of more
than one table.

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 3

– Routines (procedures and functions) and triggers are named execution units
that are used to implement application logic in the database.

– Roles and privileges are used to implement a security model. A role is a
named group of related privileges which can be granted to users or roles.

To sum up, domains, user-defined types, tables, views, assertions, routines (pro-
cedures and functions), triggers, roles, and privileges are the basic schema el-
ements in SQL-99. A database schema is formed by a set of schema element
definitions and it evolves by adding, altering, or removing schema element defi-
nitions. It is important to note that some schema evolution operations may also
have an effect on the actual database objects, for instance, on the rows of a
table. In the following, we will see which language constructs are provided in
SQL-99 to evolve a database schema. Before, to give an overview of the available
operations, we summarize the main schema evolution operations in Table 1.

Table 1. Main Operations of Schema Evolution in SQL-99

CREATE ALTER DROP

DOMAIN X X X
TYPE X X X
TABLE X X X
VIEW X — X
ASSERTION X — X
PROCEDURE X X X
FUNCTION X X X
TRIGGER X — X
ROLE X — X
PRIVILEG X — X

2.2 Creating, Altering, and Removing a Domain

The syntax of the definition of a domain is as follows:1

CREATE DOMAIN <domain-name> [AS] <data-type>
[<default-clause>] [<domain-constraint-list>]

<default-clause> ::= DEFAULT <default-value>

<domain-constraint> ::= [<constraint-name>] <check-constraint>
[<characteristics>]

1 In the following grammars, terminal and <non-terminal> symbols are distinguished
using different font types. Optional symbols are enclosed by [] brackets. The symbol
| is used to list alternatives.

4 C. Türker

<characteristics> ::= [[NOT] DEFERRABLE]
INITIALLY {IMMEDIATE | DEFERRED }

A domain constraint is expressed by a check constraint which restricts the values
of the specified data type to the permitted ones. The default clause is used to
specify a default value for the domain.

The characteristics clause specifies the checking mode of a constraint. The
checking mode determines the relative time when the constraint has to be
checked within a transaction. In the immediate mode, the constraint is checked
at the end of each database modification (either an insert, update or delete SQL-
statement) that might violate the constraint. In the deferred mode, the checking
is delayed until the end of the transaction.

In addition, the characteristics clause determines the initial checking mode,
which must be valid for the constraint at the beginning of every transaction. Only
deferrable constraints can be set to the deferred mode. The checking mode of
a non-deferrable constraint always is immediate. The modes initially immediate
and non-deferrable are implicit, if no other is explicitly specified. If initially de-
ferred is specified, then non-deferrable shall not be specified, and thus deferrable
is implicit.

The checking mode of a constraint can also be changed during the execution
of a transaction using the following command:

SET CONSTRAINTS {ALL | <constraint-name-list>}
{IMMEDIATE | DEFERRED }

Example 1. Suppose in our application domain, three different cities are distin-
guished: ’Munich’, ’London’, and ’Paris’. The “default city” is ’Munich’. Such a
domain can be created as follows:

CREATE DOMAIN cities CHAR (6)
DEFAULT ’Munich’
CHECK(VALUE IN (’Munich’, ’London’, ’Paris’)); 2

The definition of a domain can be changed by setting/removing the default value
or by adding/removing a constraint to/from the domain. The syntax of the alter
domain statement is as follows:

ALTER DOMAIN <domain-name> <alter-domain-action>

<alter-domain-action> ::= SET <default-clause>
| DROP DEFAULT
| ADD <domain-constraint>
| DROP CONSTRAINT <constraint-name>

For each column that is based on the domain to be altered by removing the
default value, the dropped default value is placed in that column if it does not
already contain a default value. Analogously, for each column that is based on
the domain to be altered by removing a domain constraint, the dropped domain
constraint is attached to the constraint list of that column.

A domain can be dropped from the database schema using the following
command:

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 5

DROP DOMAIN <domain-name> {RESTRICT | CASCADE }
If RESTRICT is specified, then the domain must not be referenced in any of the
following: table column, body of an SQL routine, query expression of a view, or
search condition of a constraint.

Let c be a column of a table t that is based on a domain d. If CASCADE is
specified, then removing d results in the following modifications of c:

– The domain d is substituted by a copy of its data type.
– The default clause of d is included in c, if c does not contain an own default

clause.
– The constraints of d are added to the table t.

2.3 Creating, Altering, and Removing a User-Defined Type

The main corpus of the syntax of the definition of a user-defined type is as
follows:

CREATE TYPE <type-name> [UNDER <type-name>]
[AS {<predefined-type> | <attribute-def-list>}]
[{INSTANTIABLE | NOT INSTANTIABLE }]
{FINAL | NOT FINAL }
[<ref-type-spec>] [<method-spec-list>]

<attribute-def > ::= <attribute-name> <data-type>
[<ref-scope-check>] [<default-clause>]

<ref-scope-check> ::= REFERENCES ARE [NOT] CHECKED
ON DELETED <ref-action>

<ref-action> ::= NO ACTION
| RESTRICT
| CASCADE
| SET NULL
| SET DEFAULT

<ref-type-spec> ::= REF USING <predefined-type>
| REF FROM (<attribute-name-list>)
| REF IS SYSTEM GENERATED

An attribute is a component of a structured type. A reference attribute is based
on the reference type. The reference scope check clause shall only be specified
for such reference attributes. Using this clause, one can specify whether and how
to react on the deletion of a referenced instance. The reference type specification
defines the way how the reference is created.

Every user-defined type is instantiable by default, that is, an instance of a
user-defined type can be created unless it is explictly disallowed by specifying
the keyword NOT INSTANTIABLE.

6 C. Türker

The under clause is used to create a subtype of another structured type. In
this way, type hierarchies can be built. The under clause shall not be used for
distinct types since it is obviously not reasonable. Let type2 be a subtype of
type1, then type2 inherits all attributes of type1. Here, type2 shall not contain
any attribute that has the same name as an inherited one. That is, attribute
redefinition is not allowed.

The final clause indicates whether or not the structured type can be used
as a supertype. Surprisingly, the keyword NOT FINAL must always be specified
within the definition of a structured type. If the under clause is specified, the
reference type specification is prohibited. For each attribute of a structured type
observer and mutator methods are generated. These methods are used to access
and modify the value of an attribute.

In case of the definition of a distinct type, the keyword FINAL must always
be specified, while neither the under clause nor the reference type specification
are allowed.2

Example 2. The following statement defines a distinct type:

CREATE TYPE swiss francs AS DECIMAL (12,2) FINAL;

A structured type is defined as follows:

CREATE TYPE address AS (
street VARCHAR(35),
number DECIMAL(4),
zip DECIMAL(5),
city VARCHAR(25),
country VARCHAR(30)

) NOT FINAL;

The types defined above can now also be used within the definition of another
structured type:

CREATE TYPE employee AS (
id SMALLINT,
name ROW(first VARCHAR(15), last VARCHAR(20)),
address address,
supervisor REF(employee) REFERENCES ARE CHECKED

ON DELETE SET NULL,
hiredate DATE,
salary swiss francs

) NOT FINAL;

In this case references are checked automatically whenever an instance of the ref-
erenced type is deleted. If the deletion concerns an actually referenced instance,
then the attribute supervisor of the referencing instance is set to NULL.

We now define a subtype of the structured type above:
2 Since the keywords NOT FINAL and FINAL must always be used without any op-

tions, it is not understandable why they have been introduced.

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 7

CREATE TYPE manager UNDER employee AS (
bonus swiss francs

) NOT FINAL;

Managers are thus modeled as special employees having an additional bonus
salary. 2

An existing structured type can also be changed by adding new attributes or
method specifications and by removing existing attributes or method specifi-
cations. The main corpus of the syntax of the alter type statement looks as
follows:

ALTER TYPE <type-name> <alter-type-action>

<alter-type-action> ::= ADD ATTRIBUTE <attribute-def >
| DROP ATTRIBUTE <attribute-name> RESTRICT
| ADD <method-spec>
| DROP <routine> RESTRICT

<routine> ::= {PROCEDURE | FUNCTION } <routine-name>

The attribute or routine to be dropped shall not be contained in any of the
following: body of an SQL routine, query expression of a view, search condition
of a constraint or assertion, or trigger action.

A user-defined type is dropped using the following command:

DROP TYPE <type-name> {RESTRICT | CASCADE }
If RESTRICT is specified, then the user-defined type to be dropped, among oth-
ers, shall not be referenced in any of the following: another user-defined type,
expression of a view, search condition of a constraint or assertion, or trigger
action.

2.4 Creating, Altering, and Removing a Table

As already mentioned, there are two types of tables: (1) usual tables as known
from the previous SQL standard and (2) typed tables which are based on a
structured type.

The main corpus of the syntax of a table definition is follows:

CREATE TABLE <table-name>
{(<table-element-list>)
| OF <type-name> [UNDER <table-name>]
[(<table-element-list>)]}

<table-element> ::= <column-def >
| <table-constraint-def >
| REF IS <column-name> <ref-generation>
| <column-name> WITH OPTIONS <option-list>

8 C. Türker

<column-def > ::= <column-name> <type-or-domain-name>
[<ref-scope-check>] [<default-clause>]
[<column-constraint-def-list>]

<column-constraint-def > ::= [CONSTRAINT <constraint-name>]
<column-constraint> [<characteristics>]

<column-constraint> ::= NOT NULL
| UNIQUE
| PRIMARY KEY
| CHECK (<search-condition>)
| <ref-spec>

<ref-spec> ::= REFERENCES <table-name> (<column-name-list>)
[MATCH {SIMPLE | PARTIAL | FULL }]
[ON UPDATE <ref-action>] [ON DELETE <ref-action>]

<table-constraint-def > ::= [CONSTRAINT <constraint-name>]
<table-constraint> [<characteristics>]

<table-constraint> ::= UNIQUE (VALUE)
| UNIQUE (<column-name-list>)
| PRIMARY KEY (<column-name-list>)
| CHECK (<search-condition>)
| FOREIGN KEY (<column-name-list>) <ref-spec>

<ref-generation> ::= SYSTEM GENERATED
| USER GENERATED
| DERIVED

<option-list> ::= [<scope-clause>] [<default-clause>]
[<column-constraint-def-list>

<scope-clause> ::= SCOPE <table-name>

A usual table is defined by specifying a column list, whereas a typed table is
defined using the of clause with the name of a structured type. In the latter
case, the attributes of the structured type determines the schema of the table.
The column options are used to define default values and constraints for a typed
table.

Using the under clause, table hierarchies can be built by setting typed tables
into a subtable relationship. The typed table specified in the under clause refers
to the direct supertable of the created typed table. Every typed table may have
at most one direct supertable. Besides, a subtable must not have an explicit
primary key.

Let table1 be a table of type type1 and table2 a table of type type2. If table1
occurs in the under clause of the definition of table2, then type2 must be a direct
subtype of type1.

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 9

Example 3. The following statement defines a typed table based on the struc-
tured type introduced in Example 2:

CREATE TABLE employees OF employee;

A subtable of this table is defined using the under clause, for instance, as follows:

CREATE TABLE managers OF manager UNDER employee;

Note this table has the same schema as the following usual table:

CREATE TABLE managers (
id SMALLINT,
name ROW(first VARCHAR(15), last VARCHAR(20)),
address address,
supervisor REF(employee) REFERENCES ARE CHECKED

ON DELETE SET NULL,
hiredate DATE,
salary swiss francs,
bonus swiss francs

);

A main difference between these two kinds of managers tables is that the rows
of the typed table can be referenced in the sense of object-orientation. That is,
there may be a reference column referring to an instance of that typed table.
In this case, the value of the reference column is a row (or object) identifier
associated with a row of the typed table. In contrast, the only way to reference
a row in a usual table is to use the foreign key concept. Here, the value of the
(referencing) foreign key must match the value of a (referenced) unique/primary
key of that table. 2

The definition of a table can be changed using the alter table statement, which
has the following syntax:

ALTER TABLE <table-name> <alter-table-action>

<alter-table-action>::=ADD [COLUMN] <column-def >
| ALTER [COLUMN] <column-name> <col-action>
| DROP <column-name> {RESTRICT | CASCADE }
| ADD <table-constraint-def >
| DROP <constraint-name> {RESTRICT | CASCADE }

<col-action> ::= SET <default-clause>
| DROP DEFAULT
| ADD <scope-clause>
| DROP SCOPE {RESTRICT | CASCADE }

The alter table statement can only be applied to base tables. A typed table,
however, cannot be altered. Usual base table can be altered by adding and

10 C. Türker

removing columns and constraints. Besides, an existing column of such a table
can be altered by setting/removing the default value. Furthermore, the scope of
a reference column can be added or removed. A scope can only be added if the
reference column does not already have one.

If RESTRICT is specified for the drop column clause, then the column to be
dropped shall not be contained in any of the following: body of an SQL routine,
query expression of a view, search condition or triggered action of a trigger, or
search condition of a table constraint.

A primary key can only be added to a table that has no supertable.
If RESTRICT is specified for the drop constraint clause, then the following

must hold: neither a table constraint nor a view shall be dependent on the table
constraint to be dropped and its name shall not be contained in the body of any
SQL routine body.

A table is dropped from the database using the following command:

DROP TABLE <table-name> {RESTRICT | CASCADE }
Removing a table means that the table schema as well as the table instance are
removed together with the corresponding privileges.

If RESTRICT is specified, then the table to be dropped shall not have any
subtable, and moreover it shall not be referenced in any of the following: body
of an SQL routine, scope of the declared type of an SQL routine parameter,
query expression of a view, search condition or triggered action of a trigger,
search condition of a check constraint of another table, search condition of an
assertion, or a referential constraint of another referenced table. If CASCADE is
specified, such dependent schema elements are dropped implicitly.

2.5 Creating and Removing a View

SQL-99 supports two types of views: (1) usual views and (2) typed views that
are based on a structured type.

The main corpus of the syntax of the view definition is as follows:

CREATE VIEW <table-name>
{(<column-name-list>)
| OF <type-name> [UNDER <table-name>]
[(<column-option-list>)]}

AS <query-expression>
[WITH CHECK OPTION]

<column-option> ::= <column-name> WITH OPTIONS <scope-clause>

A usual view is defined by a column list, whereas a typed view is specified using
the of clause which determines the schema of the view. The column option list
is used to specify the scope of reference columns.

The under clause is used to create a subview of another typed view. In this
way, view hierarchies can be built. The typed view specified in the under clause

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 11

refers to the direct superview of the created typed view. Every typed view may
have at most one direct supertable.

Let view1 be a view of type type1 and view2 be a view of type type2. If view1
occurs in the under clause of the definition of view2, then type2 must be a direct
subtype of type1.

The check option ensures that all data modification statements performed
on the view will be validated against the query expression of that view.

Example 4. Assuming there is a structured type employee and a typed table
employees, the following statement defines a typed view:

CREATE VIEW cheap employees OF employee AS (
SELECT * FROM employees WHERE salary < 5000

); 2

A view definition cannot be altered, but it can be dropped using the following
statement:

DROP VIEW <table-name> {RESTRICT | CASCADE }

If RESTRICT is specified, then the view to be dropped shall neither have any
subviews nor it shall be referenced in any of the following: body of an SQL
routine, scope of the declared type an SQL routine parameter, query expression
of another view, search condition or triggered action of a trigger, search condition
of a check constraint of another table, search condition of an assertion, or a
referential constraint of another referenced table. If CASCADE is specified, such
dependent schema elements are dropped implicitly.

2.6 Creating and Removing an Assertion

An assertion is created using the following statement:

CREATE ASSERTION <assertion-name> CHECK (<search-condition>)
[<characteristics>]

In constrast to the search condition of a column constraint or a table constraint,
the search condition of an assertion may also refer to more than one row of one
or more tables, that is, table-level and database-level check constraints can be
defined within an assertion.

An existing assertion is dropped from the database using the following state-
ment:

DROP ASSERTION <assertion-name>

12 C. Türker

2.7 Creating, Altering, and Removing a Routine

A routine in SQL-99 refers to a procedure or function. The main corpus of the
syntax of a procedure and function definition is as follows:

CREATE PROCEDURE <routine-name> (<parameter-list>)
<routine-characteristics> <routine-body>

CREATE FUNCTION <routine-name> (<parameter-list>) <returns-clause>
<routine-characteristics> <routine-body>

Loosely spoken, a function is a procedure with an additional return clause. A
routine can be specified with different characteristics. For instance, a routine
can be either an SQL or an external routine, it can be deterministic or non-
deterministic, and it can be a routine that only reads or modifies SQL data. The
routine body consists of an SQL procedure statement.

A routine can also be altered and dropped, respectively, using the following
commands:

ALTER <routine> <alter-routine-characteristics> RESTRICT

DROP <routine-name> {RESTRICT | CASCADE }

If RESTRICT is specified, then the routine to be dropped shall not be referenced
in any of the following: body of an SQL routine, query expression of a view, search
condition of a check constraint or assertion, or triggered action of a trigger. If
CASCADE is specified, such dependent schema elements are dropped implicitly.

2.8 Creating and Removing a Trigger

The syntax of a trigger definition is as follows:

CREATE TRIGGER <trigger-name>
{BEFORE | AFTER }
{INSERT | DELETE | UPDATE [OF <column-name-list>]}
ON <table-name> [REFERENCING <old-or-new-values-list>]
[FOR EACH {ROW | STATEMENT }]
[WHEN (<search-condition>)]
<SQL-procedure-stat> | BEGIN ATOMIC <SQL-procedure-stat-list> END

<old-or-new-values> ::= {OLD | NEW } [ROW] [AS] <correlation-name>
| {OLD | NEW } TABLE [AS] <table-alias>

A trigger is implicitly activated when the specified event occurs. The activation
times before and after specify when the trigger should be fired, that is, either
before the triggering event is performed or after the triggering event. Valid trig-
gering events are the execution of insert, update, or delete statements. A trigger
condition and trigger action can be verified and executed, respectively, for each

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 13

row affected by the triggering statement or once for the whole triggering event
(for each statement). Trigger conditions and actions can refer to both old and
new values of the rows affected by the triggering event.

An existing trigger can be dropped using the following command:

DROP TRIGGER <trigger-name>

2.9 Creating and Removing Roles

The create role statement has the following syntax:

CREATE ROLE <role-name> [WITH ADMIN OPTION <grantor>]

After the creation of a role, no privileges are associated with that role. These
have to be added using the grant statement, as described in the following. The
admin option is used to give the grantee the right to grant the role to others, to
revoke it from other users or roles, and to drop or alter the granted role.

An existing role is dropped using the following statement:

DROP ROLE <role-name>

2.10 Granting and Revoking Privileges

Privileges are granted to a user or role using the grant statement, which has the
following syntax:

GRANT {ALL PRIVILEGES | <privileges-or-role-name-list>}
TO <grantee-list>
[WITH HIERARCHY OPTION] [WITH GRANT OPTION]
[WITH ADMIN OPTION] [GRANTED BY <grantor>]

The hierarchy option can only be applied to privileges on typed tables or typed
views. It specifies that the granted privileg is also valid for all subtables (sub-
views) of a typed table (typed view). The grant option is used to specify that
the granted privileg is also grantable, that is, the user is allowed to give others
the privileg to access and use the named object. In general, the hierarchy and
grant options shall only be specified when privileges are granted while the admin
option shall only be specified when roles are granted.

A granted privileg or role can be revoked from a user or role using the revoke
command. The syntax of the revoke command is as follows:

REVOKE [{GRANT | HIERARCHY | ADMIN } OPTION FOR]
{ALL PRIVILEGES | <privileges-or-role-name-list>}
FROM <grantee-list> [GRANTED BY <grantor>]
{RESTRICT | CASCADE }

Analogously to the grant statement, the hierarchy and grant option shall only
be specified when privileges are revoked, while the admin option can only be
specified when roles are revoked.

14 C. Türker

Example 5. The following statement creates a role reademp. This role is associ-
ated with the privileg to read the data of all kinds of employees:

CREATE ROLE reademp;
GRANT SELECT ON employee TO reademp WITH HIERARCHY OPTION;

The hierarchy option ensures that all users associated with the role reademp are
also allowed to read the data of any special employee, for instance, the salary of
a manager.

It is also possible to revoke only the hierarchy option from the role reademp.
This is achieved by executing the following statement:

REVOKE HIERARCHY OPTION FOR SELECT ON employee FROM reademp;

Using the statement above without the hierarchy option revokes the privileg to
select any employee. 2

3 Comparison of Schema Evolution Constructs in
SQL-99 and Commercial DBMS

In this section, we compare the schema evolution language constructs of SQL-
99 [Int99] with that of the commercially available (object-)relational database
management systems Oracle8i Server (Release 8.1.6) [Ora99], IBM DB2 Univer-
sal Database (Version 7) [IBM00], Informix Dynamic Server.2000 (Version 9.2)
[Inf99], Microsoft SQL Server (Version 7.0) [Mic99], Sybase Adaptive Server
(Version 11.5) [Syb99], and Ingres II (Release 2.0) [Ing99]. In the following, we
will use the abbreviations Oracle, DB2, Informix, MSSQL, Sybase, and Ingres,
respectively, to refer to these systems. In addition, we will use the term refer-
ence systems to refer to all of these systems as a whole. It should be pointed
out that in fact only Oracle, DB2, and Informix could be denoted as object-
relational database management systems. The other three systems are pure re-
lational database management systems.

3.1 Domains and Assertions

Neither the concept of a domain nor the concept of an assertion is supported by
any reference system.

However, there are a few rudimentary approaches in that directions. Ingres,
for instance, provides the concept of an integrity rule which actually corresponds
to a row-level assertion. Internally, these integrity rules are stored with a gen-
erated integer number, which is used to identify an integrity rule within a table
definition. This number is needed, for instance, to drop an integrity rule. An
integrity rule is created and dropped, respectively, as follows:

CREATE INTEGRITY ON <table-name> IS <search-condition>
DROP INTEGRITY ON <table-name> {ALL | <integer-list>}

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 15

The creation of an integrity rule fails if the table contains a row that does not
satisfy the search condition. In the Ingres manuals, there is a hint to define check
constraints within a create table or alter table statement instead of specifying
integrity rules that anyway are not conform to the standard.

MSSQL and Sybase provide language constructs for specifying named default
values and rules. A named default value is created and dropped, respectively, as
follows:

CREATE DEFAULT <default-name> AS <constant-expression>
DROP DEFAULT <default-name>

A named default value can then be bound to a table column or a distinct type
using the predefined stored procedure SP BINDEFAULT with the following pa-
rameters:

SP BINDEFAULT <default-name>, ’<column-or-type-name>’

Before a named default value can be dropped, it must be unbound
from all dependent schema elements using the predefined stored procedure
SP UNBINDEFAULT.

In the context of MSSQL and Sybase, a rule defines a domain of accept-
able values for a particular table column or distinct type. A rule is created and
dropped, respectively, as follows:

CREATE RULE <rule-name> AS <search-condition>
DROP RULE <rule-name>

A rule must be unbound using the predefined stored procedure SP UNBINDRULE
before it can be dropped.

Similarly to a named default value, a rule is bound to a table column or
distinct type using the predefined stored procedure SP BINDRULE with the
following parameters:

SP BINDRULE <rule-name>, ’<column-or-type-name>’

When a rule is bound to a table column or distinct type, it specifies the accept-
able values that can be inserted into that column. A rule, however, does not
apply to data that already exists in the database at the time the rule is created.
It also does not override a column definition. That is, a nullable column can take
the null value even though NULL is not included in the text of the rule. If both a
default and a rule are defined, the default value must fall in the domain defined
by the rule. A default value that conflicts with a rule will never be inserted.
An error message will be generated each time such a conflicting default value
is tried to be inserted. Since a rule performs some of the same functions as a
check constraint, the latter, standard way of restricting the values in a column
is recommended.

16 C. Türker

3.2 User-Defined Types

As already mentioned, SQL-99 supports two kinds of user-defined types: distinct
type and structured types. Since certain user-defined types have been provided
by some of the reference systems prior to the introduction of SQL99, the notions
and language constructs used in these systems differ in some cases.

Table 2 gives an overview of the support of the various named and unnamed
type constructors in the reference systems. Interestingly, the unnamed array
type is supported in none of the reference systems, although it is proposed in
SQL-99. On the other hand, the unnamed collection types set, multiset, and
list are only provided in Informix. These types were originally included in the
preliminary drafts of SQL-99, but they were now postponed to the next version
of the standard, which is currently referred to as SQL4.

Table 2. Comparison of User-Defined Types

In DB2 and Informix, the creation of a distinct type is performed using the
following command:

CREATE DISTINCT TYPE <type-name> AS <source-type-name>

In DB2, the statement above must end with an additional keyword
WITH COMPARISONS unless the source data type is BLOB, CLOB,
LONG VARCHAR, LONG VARGRAPHIC, or DATALINK. This option ensures that
the instances of the same distinct type can be compared. Both, DB2 and In-
formix automatically generate two functions to cast in both directions from the
distinct type to its source type and vice versa.

DB2’s syntax of the definition of a structured type is more or less the same
as proposed in SQL-99. Nevertheless, it is worth to mention that DB2 requires

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 17

the specification of an awkward, non-optional keyword MODE DB2SQL. On the
other hand, the specification of the keyword NOT FINAL is optional.

DB2 also provides a means to alter the definition of a structured type. At-
tributes and methods can be added (dropped) to (from) a structured type. The
syntax of the alter type statement is as follows:

ALTER TYPE <type-name>
{ADD ATTRIBUTE <attribute-def >
| DROP ATTRIBUTE <attribute-name> [RESTRICT]
| ADD <method-spec>
| DROP METHOD <method-name> [RESTRICT]}

The restrict option ensures that no attribute or method can be dropped if the
structured type they belong to is referenced in any other schema element.

Distinct and structured types are dropped in DB2 using the following com-
mands:

DROP DISTINCT TYPE <type-name>
DROP TYPE <type-name>

A user-defined type is not dropped if there is any schema element that depends
on this type. An error occurs if the user-defined type to be dropped has a subtype
or is used within the definition of a column, typed table, typed view, or another
structured type.

Informix supports the concept of a structured type under the notion of a
named row type. The syntax of the definition of a named row type is as follows:

CREATE ROW TYPE <type-name> (<attribute-def-list>)
[UNDER <type-name>]

A named row type can be used to create a typed table or typed view. It can
also be assigned to a column of a table or to an attribute of another named
row type. The concept of subtyping is supported analogously to SQL-99. That
is, attributes and methods are inherited from the supertypes to the subtypes
and the redefinition of inherited attributes and methods is not allowed. In a
type hierarchy, a named row type cannot be substituted for its supertype or its
subtype.

An attribute of a named row type can be defined as non-nullable. Other kinds
of constraints, however, cannot be applied to a named row type directly. They
have to be defined within the create table or alter table statement.

Besides these two kinds of user-defined types, Informix also supports the
unnamed row type as well as the collection types set, multiset, and list. Complex
data types are created by combining these type constructors in any order.

Distinct types and named row types are dropped in Informix using the fol-
lowing commands:

DROP TYPE <type-name> RESTRICT
DROP ROW TYPE <type-name> RESTRICT

18 C. Türker

Since the keyword RESTRICT is mandatory, a user-defined type cannot be
dropped if the database contains any schema element that depends on this type.

Oracle distinguishes three kinds of user-defined types: object types, varying
array types, and table types, which are defined according to the following syntax:

CREATE TYPE <type-name> AS OBJECT (<attr-method-spec>)
CREATE TYPE <type-name> AS VARRAY OF <data-type>
CREATE TYPE <type-name> AS TABLE OF <data-type>

Oracle does not support the concept of subtyping. The notion of an object type
corresponds to the notion of a structured type in SQL-99. Distinct types are not
supported. Instead, two named collection types are provided. A varying array
type defines an ordered multiset of elements, each of which has the same data
type. The data type of the elements have to be one of the following: built-in data
type, reference type, or object type. The cardinality of the multiset must be ex-
plicitly specified. A table type in fact defines an unordered multiset of elements,
each of which has the same data type. The elements can be either instances of
an object type or values of a built-in type. The cardinality of this multiset is not
restricted. A collection type, however, cannot contain any other collection type.
That is, a varying array type, for instance, cannot contain any elements that are
varying arrays or tables. In this way, nesting of tables is restricted to one level.

Nevertheless, Oracle allows to alter a type definition, either by recompiling
a type definition or by replacing the object type. The syntax of the alter type
statement looks as follows:

ALTER TYPE <type-name> AS
{COMPILE | REPLACE AS OBJECT (<attr-method-spec>) }

A user-defined type is dropped in Oracle using the following command:

DROP TYPE <type-name> [FORCE]

This statement removes a user-defined type if there is no schema element in the
database that relies on this type. If there is such a dependent schema element,
the force option can be used to drop the type and to mark all columns that use
this type as unused.

The concept of a distinct type is supported in MSSQL and Sybase, too. In
these systems, a distinct type is created and dropped, respectively, by executing
the following predefined stored procedures:

SP ADDTYPE <type-name>, ’<predefined-type>’
SP DROPTYPE <type-name>

A distinct type cannot be dropped if it is referenced in any other schema element.
Table 3 summarizes the various schema evolution operations related to user-

defined types.

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 19

Table 3. Comparison of Type Constructs

3.3 Tables

In all reference systems, the relational part of a table definition basically follows
the proposal of SQL-99. In the following, we therefore focus more on the object-
relational extensions of a table definition.

While typed tables are supported in Oracle, DB2, and Informix, table hi-
erarchies (subtables) are only provided in DB2 and Informix. The main corpus
of the definition of typed tables in all three systems more or less follows the
definition of SQL-99. Here, the systems mainly differ in the naming of the same
concepts. DB2 uses the terms of SQL-99 (one should better say that SQL-99
uses the terms of DB2), Informix also uses the term typed table but the notion
of a named row type instead of the term structured type, and Oracle calls these
concepts object tables and object types.

In all three systems, user-defined types can be used as data type of a column.
As we could see in the previous subsection, various type constructors are provided
in the different systems to create complex data types.

Tables can be altered in all reference systems. However, the provided alter
table constructs differ in several ways. Table 4 gives an overview of the different
constructs.

As we can see there, all reference systems provide means to add new columns
and constraints to a table. Sybase, however, has the restriction that the newly
added column must be nullable. In all reference systems, it is also possible to drop
an existing constraint from a table. A column, however, can only be dropped in
Oracle, Informix, MSSQL, and Ingres.

Some of the reference systems distinguishes between different drop options.
Ingres is the only reference system that follows the proposal of SQL-99 with
respect to the removing of a column or constraint. The specification of the drop
option is mandatory and it can be decided between the options RESTRICT and

20 C. Türker

Table 4. Comparison of ALTER TABLE Constructs

CASCADE. The former requires that the drop column or drop constraint state-
ment is rejected if there is a schema element that depends on the schema ele-
ment to be dropped. The latter implicitly drops the dependent schema elements.
Oracle supports the cascade option in combination with the drop constraint con-
struct. If CASCADE is not explicitly specified, the default mode implements the
restrict semantics. The other reference systems do not support any drop options.
The default mode of the drop constraint statement is RESTRICT in MSSQL and
Sybase, while it is CASCADE in DB2 and Informix. A drop column construct
(without a drop option) is also provided in Oracle, Informix, and MSSQL. The
default mode is RESTRICT in Oracle and MSSQL, while it is CASCADE in In-
formix.

All reference systems except Ingres provide an alter column construct. In
Table 4 we used the symbol ‘(X)’ to mark the constructs that do not follow the
syntax of the SQL-99 proposal. The syntax and semantics of the alter column
constructs provided in the different systems differ in several ways:

Oracle: ALTER TABLE <table-name> MODIFY <column-name>
[<data-type>] [<default-clause>] [NOT NULL]

DB2: ALTER TABLE <table-name> ALTER COLUMN <column-name>
{SET DATA TYPE <data-type>

| ADD SCOPE <typed-table-name>}
Informix: ALTER TABLE <table-name> MODIFY <column-name>

<data-type> [<default-clause>] [<constraint>]

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 21

MSSQL: ALTER TABLE <table-name> ALTER COLUMN <column-name>
<data-type> [NOT NULL | NULL]

Sybase: ALTER TABLE <table-name> REPLACE <column-name>
<default-clause>

That is, Oracle and Informix provides a construct to alter the data type, default
value, and constraints of a column. In fact, Oracle only allows the specification
of a not null constraint; other constraints have to be added or dropped using
the add constraint and drop constraint statements, as discussed previously. In
MSSQL, a column can be altered by changing its data type and defining a not
null constraint for this column. DB2 provides a construct that can be used either
to change the data type of a column or to add a scope to a reference column.
Sybase can replace the default value of a column.

Informix allows to convert a usual table into a typed one. This modification is
performed using the add type clause. The added type must be compatible with
the impicit type of the usual table, that is, they must have exactly the same
attributes with respect to their names and data types.

Although all reference systems provide a drop table statement, they imple-
ment this statement with different options and semantics (for an overview see
Table 5).

Table 5. Comparison of DROP TABLE Constructs

DB2 applies the cascade or invalidate semantics, meaning that the content
of the table is removed together with all dependent indexes, constraints, and
privileges, while dependent views, procedures, functions, and triggers are only
invalidated. If a table contains a subtable, it cannot be dropped before all its
subtables are dropped. DB2 provides the hierarchy option to drop all tables of
a table hierarchy. Note that the functionality of the option is included in the
cascade option of SQL-99.

In MSSQL and Sybase, a drop table statement removes the table definition
together with all data, indexes, triggers, constraints, and privileges for that table.
Any view, stored procedures, default, or rule that references the dropped table
must be dropped explicitly.

Oracle applies the restricts semantics to drop a table. Nevertheless, it sup-
ports the specification of the cascade option to drop a table together with all

22 C. Türker

dependent constraints. As in DB2, dependent views, procedure, functions, and
triggers are not dropped. They are only invalidated and can later be used if the
table is re-created.

Informix supports the restrict semantics as well as the cascade semantics.
If neither RESTRICT nor CASCADE is specified, the drop table statement is
executed with the cascade semantics.

Ingres drops a table implicitly with the cascade semantics, although it does
not support the explicit specification of this option.

3.4 Views

The three object-relational systems Oracle, DB2, and Informix support both
usual (untyped) views as well as typed views. However, subviews (view hierar-
chies) are only provided in DB2. Table 6 gives an overview of various schema
evolution operations defined on the concept of a view.

Table 6. Comparison of VIEW Constructs

Let us now first consider the main corpus of the syntax of the view definition
in Oracle:

CREATE VIEW <table-name>
[(<column-name-list>) | OF <type-name>]
AS <query-expression>
[WITH {CHECK OPTION | READ ONLY }]

A typed view is defined using the of clause, as in SQL-99. Oracle provides the
read-only option which ensures that no insert, update, or delete can be performed
through the view on the underlying base table(s). The well-known check option
validates inserts, updates, and deletes against the query expression of the view
and rejects invalid changes through the view.

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 23

The view definition in Informix is very similar to the previous one, except
that the read only option is not supported and the keyword OF TYPE must be
used instead of the keyword OF to define a typed view:

CREATE VIEW <table-name>
[(<column-name-list>) | OF TYPE <type-name>]
AS <query-expression> [WITH CHECK OPTION]

Compared to the previous view definitions, DB2 provides a more advance one,
which allows to define view hierarchies based on typed views. For the definition
of a subview, DB2’ create view statement, however, requires the ackward, non-
optional keywords MODE DB2SQL and INHERIT SELECT PRIVILEGES. The
main part of the create view statement looks as follows:

CREATE VIEW <table-name>
[(<column-name-list>) | OF <type-name>

[MODE DB2SQL
UNDER <table-name>
INHERIT SELECT PRIVILEGES]]

AS <query-expression> [WITH CHECK OPTION]

Oracle, DB2, and MSSQL provide an alter view statement. However, since the al-
ter view statement is not standardized yet, the different implementations provide
different functionality under the same label. In Oracle, the alter view statement
only recompiles a view:3

ALTER VIEW <table-name> COMPILE

In DB2, the alter view statement modifies an existing view by altering a reference
column to add a scope. The syntax of this statement is as follows:

ALTER VIEW <table-name> ALTER [COLUMN] <column-name>
ADD SCOPE <typed-table-name>

Finally, in MSSQL, the alter view statement replaces a previously created view
without affecting dependent stored procedures or triggers and without changing
privileges. The syntax of this variant is as follows:

ALTER VIEW <table-name> [(<column-name-list>)]
AS <query-expression> [WITH CHECK OPTION]

Concerning the drop view statement, all six reference systems more or less closely
follows the proposal of SQL-99. In Oracle, DB2, MSSQL, and Sybase, the exe-
cution of a drop view statement invalidates all views that are based on the view
to be dropped. DB2 additionally provides the hierarchy option, which is similar
to the cascade option in SQL-99. The hierarchy option is used to implicitly drop
all views of a view hierarchy. The syntax of the corresponding statement is as
follows:

DROP VIEW HIERARCHY <table-name>

Here, table name refers to the name of a root view.
3 A view can be replaced in Oracle using the keyword CREATE OR REPLACE VIEW

in create view command.

24 C. Türker

In Informix, a view can be dropped following either the restrict or the cascade
semantics. RESTRICT ensures that the drop view operation fails if any existing
view is defined on the view to be dropped. CASCADE guarantees that all such
dependent view are implicitly dropped, too. If none of these keywords is explicitly
specified, the drop operation is executed with the cascade semantics. Ingres also
applies this strategy, but without providing any options. The remaining reference
systems apply the restrict semantics.

3.5 Procedures, Functions, and Triggers

All reference systems support the creation and deletion of routines and triggers.
However, since the programming languages to define these routines and triggers
differ in several ways, we omit a comparison of the various programming styles.
Instead, we address some other interesting issues.

As the alter view statement, the alter routine and alter trigger statements
are not standardized yet. Nevertheless, they are included in some of the refer-
ence systems. For instance, the alter procedure statement is used in Oracle to
recompile a (stand-alone) procedure:

Oracle: ALTER {PROCEDURE | FUNCTION | TRIGGER} <routine-name>
COMPILE

MSSQL allows to alter an existing procedure without changing privileges and
without affecting any dependent stored procedures or triggers. Analogously,
MSSQL provides an alter trigger statement that replaces the definition of an
existing trigger.

Oracle, Informix, and MSSQL even support the enabling and disabling of
triggers:

Oracle: ALTER TRIGGER <trigger-name> {ENABLE | DISABLE}
ALTER TABLE <table-name> {ENABLE | DISABLE} ALL TRIGGERS

Informix: SET TRIGGERS <trigger-name-list> {ENABLED | DISABLED}
MSSQL: ALTER TABLE <table-name> {ENABLE | DISABLE} TRIGGER

{ALL | <trigger-name-list>}
In Oracle, DB2, MSSQL, and Sybase, the execution of a drop routine statement
invalidates all schema elements that are based on the routine to be dropped. In
Informix and Ingres, a procedure is dropped implicitly with the cascade seman-
tics.

3.6 Roles and Privileges

Roles and privileges are supported by all six reference systems in a very similar
way as proposed in SQL-99. Table 7 gives an overview of the corresponding
language constructs.

As depicted there, the concept of a role is provided in all reference systems
except DB2. Concerning the creation of a role, Oracle, Informix, and Ingres

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 25

Table 7. Comparison of ROLE, GRANT, and REVOKE Constructs

closely follows the SQL-99 proposal. MSSQL and Sybase, in contrast, implement
the concept of a role by providing predefined stored procedures. In MSSQL, a
role is created by executing the stored procedure SP ADDAPPROLE with the
following parameters:

SP ADDAPPROLE <role-name>, <password>

After creation a role is inactive by default. It can be activated by executing the
stored procedure SP SETAPPROLE with the same parameters as above. A role is
dropped by executing the stored procedure SP DROPAPPROLE with the name
of the role:

SP DROPAPPROLE <role-name>

In Sybase, a role is granted and revoked, respectively, by executing the stored
procedure SP ROLE as follows:

SP ROLE {’GRANT’ | ’REVOKE’}, <predefined-role> <user-name>

Sybase supports three predefined roles:

1. SA ROLE (system administrator),
2. SSO ROLE (system security officer), and
3. OPER ROLE (operator).

A role is switched on or off, respectively, using SET ROLE {ON | OFF}.
With respect to the grant statement, all reference systems follow the SQL-99

proposal. Even the grant option is provided by all systems. In case of the revoke
statement, however, there are some minor differences in the various implemen-
tations.

26 C. Türker

In Sybase, the revoke statement is implemented with the cascade semantics,
that is, the removal of a privilege implies the removal of all dependent privileges.
The cascade semantics is also default in Informix. Oracle, Informix, and Ingres
provide the keyword CASCADE to explicitly specify this semantics. The restricted
semantics prevents from revoking a privilege if there is a dependent privilege.

Applying the revoke statement with the grant option revokes the right to
grant the granted privilege to others. If additionally the cascade option is used,
the transitively granted privileges are revoked, too. This option is supported in
MSSQL, Sybase, and Ingres.

3.7 Constraints

Although constraints are part of a table definition, we discuss their evolution
separately and in more detail due to their importance. As mentioned before,
new constraints can be added to a table and existing ones removed from a
table. In addition, and in contrast to SQL-99, the checking of constraints can
be enabled and disabled in some of the reference systems. These issues can even
be combined. For instance, a constraint can be added to a table in the disabled
mode or a disabled constraint can be enabled but without verifying it against
the current content of the corresponding table. Table 8 gives an overview of
the support of constraint evolution constructs in SQL-99 and in the reference
systems.

Table 8. Comparison of Constraint Evolution Constructs

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 27

According to Table 8, Oracle supports the full range of schema evolution con-
structs that are related to constraints. Another interesting fact is that SQL-99
does not provide any means to enable and disable constraints. The gray shaded
fields highlight the default settings. The ‘(X)’ marked fields state that the con-
cept is supported implicitly. For instance, the add and drop clauses are provided
by all reference systems in its standard form. However, extensions like ENABLE,
DISABLE, or CASCADE are not supported explicitly by the ‘(X)’ marked sys-
tems. In the following we will discuss the different constructs in more detail.

When a constraint is added to a table using the statement

ALTER TABLE <table-name> ADD <table-constraint>

the newly added constraint is enabled and validated by default. Enabled means
that future modifications of the content of the table will be verified against
this constraint (unless it disabled in the meanwhile). Validated means that the
content of table is verified against the constraint when the latter is added to the
table.

All reference systems support these two modes. Moreover, Oracle and In-
formix allow to add an enabled constraint even in case there is a row in the
table that does not satisfy the constraint. In this case an exception clause has
to be specified as follows:

Oracle: ALTER TABLE <table-name> ADD <table-constraint>
EXCEPTIONS INTO <table-name>

Informix: ALTER TABLE <table-name> ADD <table-constraint> FILTERING

The rows that do not satisfy the newly added constraint are removed from the
table to an exception/diagnostic table, which can be named explicitly in Oracle.
Both systems also allow to add a disabled constraint to a table. By default, such
a constraint is not validated when it is added to the table. A disabled constraint
is specified as follows:

Oracle: ALTER TABLE <table-name> ADD <table-constraint> DISABLE

Informix: ALTER TABLE <table-name> ADD <table-constraint> DISABLED

Oracle and MSSQL allow to add an enabled constraint that is not validated
when it is added to the table. In this case, some rows in the table may violate
the constraint. However, future modifications of the table will be verified against
the newly added constraint. Such a constraint is defined as follows:

Oracle: ALTER TABLE <table-name> ADD <table-constraint>
NOVALIDATE

MSSQL: ALTER TABLE <table-name> WITH NOCHECK
ADD <table-constraint>

In all reference systems, a constraint can be dropped from a table as follows:

ALTER TABLE <table-name> DROP <constraint-name>

28 C. Türker

Some of the reference systems support the specification of drop option, which is
either RESTRICT or CASCADE. RESTRICT disallows the removal of the con-
straint if there is another constraint that depends on the constraint to be
dropped. If CASCADE is specified, the constraint is dropped together with all its
depending constraints.

The specification of one of these modes is mandatory in Ingres, whereas it is
optional in Oracle. The other systems do not support the specification of these
modes. The default mode is RESTRICT in Oracle, Informix, MSSQL, and Sybase,
and it is CASCADE in DB2.

A disabled constraint can be enabled in the validate mode as follows:4

Oracle: ALTER TABLE <table-name> ENABLE <constraint>

Informix: SET CONSTRAINTS <constraint-name> ENABLED

The enabling of a constraint can also be performed in the exception/filtering
mode. All rows that violate the enabled constraint are removed from the table
into an exception/violations table.

The enabling of a disabled constraint in the novalidate mode is specified as
follows:

Oracle: ALTER TABLE <table-name> ENABLE NOVALIDATE <constraint>

MSSQL: ALTER TABLE <table-name> CHECK <constraint>

An enabled constraint can be disabled as follows:

Oracle: ALTER TABLE <table-name> DISABLE <constraint>

Informix: SET CONSTRAINTS <constraint-name> DISABLED

MSSQL: ALTER TABLE <table-name> NOCHECK <constraint>

The statements are executed in all three systems with the restrict semantics.
Cascaded disabling of constraints is only supported by Oracle. For that, the
keyword CASCADE has to be attached to the disable clause.

3.8 Renaming Schema Elements

In the following, we present a useful schema evolution operation that is already
implemented in some of the reference systems, although it is not included in
SQL-99.

The renaming of a table is supported by Oracle, DB2, Informix, MSSQL,
and Sybase. In Oracle, DB2, and Informix, the syntax of the rename statement
is as follows:

RENAME TABLE <old-table-name> TO <new-table-name>

4 Here, <constraint> stands for one of the following: CONSTRAINT <constraint-
name>, PRIMARY KEY, or UNIQUE (<column-list>).

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 29

Oracle additionally provides the following alternative way to change the name
of a table:

ALTER TABLE <old-table-name> RENAME TO <new-table-name>

Informix even allows to rename a particular column of a table applying the
rename command with the following syntax:

RENAME COLUMN <table-name>. <old-col-name> TO <new-col-name>

MSSQL and Sybase provide a predefined stored procedure which is executed
with the following parameters to rename a schema element:

SP RENAME <old-name>, <new-name>

This procedure is applicable to names that refer to tables, columns, defaults,
constraints, rules, triggers, views, and distinct types.

Note that renaming a schema element may also effect dependent schema el-
ements. Oracle, for instance, automatically transfers the new name of a table
to all dependent constraints, indexes, and privileges, while it invalidates the de-
pendent views, functions, procedures, and triggers. DB2 applies a more strict
strategy. The renaming of a table is disallowed if the table contains a check or
referential constraint or there is a dependent view, trigger, function, procedure,
or another table with a dependent constraint or reference column. If there is no
such a dependency, the renaming is performed by updating the schema cata-
log and transferring the new name to all dependent indexes and privileges. In
Informix, in contrast, the renaming is completely transparent, that is, the new
name is transferred to the schema catalog as well as to all dependent schema
elements.

4 Some Final Remarks

In this paper, we presented and compared the way schema evolution is supported
in SQL-99 and in commercially leading (object-)relational database management
systems. We will close this paper with a few remarks on some open issues and
schema evolution operations that are available neither in SQL-99 nor in one of
the reference systems.

An important open issue concerns the consistency of a schema after perform-
ing a schema evolution operation. This issue includes the question whether or
not a schema definition as a whole is syntactically and semantically (logically)
correct. Considering the current implementations of commercial database man-
agement systems, we can state that all systems perform syntactic checking. They,
for instance, check whether a foreign key definition is correct in the sense that the
names and the data types of the referencing and the referenced columns match.
However, none of the systems perform (advanced) semantic checking. Suppose
there is a table on which the check constraint CHECK (y > 0) is defined. Unfor-
tunately, all reference systems accept an alter table statement that adds a new

30 C. Türker

(obviously contradicting) constraint of the form CHECK (y < 0). In fact, the
reference systems do not provide any support for detecting inconsistent specifi-
cations implied by check constraints. Interestingly, efficient consistency checking
procedures for important and often used kinds of constraints are provided, for
instance, in [Ull89,SKN89,GSW96a,GSW96b]. Since the knowledge about the
consistency problem and its solutions is highly important for a good design and
correct evolution of a database, database designers and administrators have be
aware of this problem. In object-relational database systems, the problem of
inconsistent constraints becomes even more prominent because constraints are
implicitly defined for all subtables of a table. In other words, there are con-
straints that are valid for a table on which they originally were not defined. So it
becomes much harder to design, implement, and maintain a semantically correct
database (schema).

Now turn the focus on schema evolution in object-oriented databases. Con-
sidering the research in this field, for instance, [BKKK87,Ngu89,TK90,SZ90,
Bra93] [ABDS94,ST94,RR95,FMZ+95,Bel96,PÖ97], some nice schema evolution
operations could be exploited for object-relational databases. For instance, a
prominent schema evolution operation in an object-oriented database is the re-
structuring of a type or table hierarchy. Existing types or tables can be linked
via a subtype or subtable, respectively. Such schema evolution operations are
not supported by any current object-relational system. One could think about
including statements of the forms

SET <subtype-name> UNDER <supertype-name>
SET <subtable-name> UNDER <supertable-name>

or

ALTER TYPE <subtype-name> ADD UNDER <supertype-name>
ALTER TABLE <subtype-name> ADD UNDER <supertype-name>

into the standard as well as commercial systems. Such statements would help
to easily set existing types (tables) into a subtype (subtable) relationship. The
inverse statements to drop a subtype or subtable relationship could looks as
follows:

ALTER TYPE <subtype-name> DROP UNDER <supertype-name>
ALTER TABLE <subtable-name> DROP UNDER <supertable-name>

One might also think about altering a subtype or subtable relationship by redi-
recting the link to another subtype or subtable, respectively. Another useful
schema evolution construct could be the removal of a subtable from a table
hierarchy without removing all its subtables. Instead these subtables could be
directly linked to the supertable of the dropped table. An inline transformation
[SCR01] can be used to flatten a column that is based on a structured type. Such
a structured column is substituted by a set of columns which originally were the
fields of that structured column.

The list of potentially useful schema evolution operations could be supple-
mented easily. Therefore, we close this paper by expressing our hope that the

Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS 31

next versions of the SQL standard and in particular of the commercial database
systems will provide some more advanced schema evolution language constructs,
which are hopefully embedded in a more clear and rigorously developed object-
relational model.

Acknowledgments. Thanks to Kerstin Schwarz for useful remarks on a pre-
liminary version of this paper.

References

[ABDS94] E. Amiel, M.-J. Bellosta, E. Dujardin, and E. Simon. Supporting Ex-
ceptions to Behavioral Schema Consistency to Ease Schema Evolution in
OODBMS. In J. B. Bocca, Matthias Jarke, and C. Zaniolo, editors, Proc.
of the 20th Int. Conf. on Very Large Data Bases, VLDB’94, Santiago,
Chile, September 12–15, 1994, pages 108–119. Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1994.

[Bel96] Z. Bellahsene. A View Mechanism for Schema Evolution in Object-
Oriented DBMS. In R. Morrison and J. B. Keane, editors, Advances in
Databases: 14th British National Conf. on Databases, BNCOD 14, Ed-
inburgh, UK, July 1996, Lecture Notes in Computer Science, Vol. 1094,
pages 18–34. Springer-Verlag, Berlin, 1996.

[BKKK87] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Imple-
mentation of Schema Evolution in Object-Oriented Databases. In U. Dayal
and I. Traiger, editors, Proc. of the 1987 ACM SIGMOD Int. Conf.
on Management of Data, San Franscisco, CA, ACM SIGMOD Record,
Vol. 16, No. 3, pages 311–322, ACM Press, 1987.

[Bra93] S. E. Bratsberg. Evolution and Integration of Classes in Object-Oriented
Databases. Dissertation, The Norwegian Institute of Technology, Univer-
sity of Trondheim, June 1993.

[FMZ+95] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and J. Madec. Schema
and Database Evolution in the O2 Object Database System. In U. Dayal,
P. M. D. Gray, and S. Nishio, editors, Proc. of the 21st Int. Conf. on Very
Large Data Bases, VLDB’95, Zürich, Switzerland, September 11–15, 1995,
pages 170–182. Morgan Kaufmann Publishers, San Francisco, CA, 1995.

[GSW96a] S. Guo, W. Sun, and M. A. Weiss. On Satisfiability, Equivalence, and
Implication Problems Involving Conjunctive Queries in Database Systems.
IEEE Transactions on Knowledge and Data Engineering, 8(4):604–616,
August 1996.

[GSW96b] S. Guo, W. Sun, and M. A. Weiss. Solving Satisfiability and Implication
Problems in Database Systems. ACM Transactions on Database Systems,
21(2):270–293, June 1996.

[IBM00] IBM Corporation. IBM DB2 Universal Database: SQL Reference, Version
7, 2000.

[Inf99] Informix Corporation, Menlo Park, CA. Informix Guide to SQL: Syntax,
Informix Dynamic Server.2000, Version 9.2, December 1999.

[Ing99] Ingres Corporation. Ingres Database Administrator’s Guide, Version II,
1999.

32 C. Türker

[Int99] International Organization for Standardization (ISO) & American Na-
tional Standards Institute (ANSI), ANSI/ISO/IEC 9075-2:99. ISO In-
ternational Standard: Database Language SQL - Part 2: Foundation
(SQL/Foundation), September 1999.

[Mic99] Microsoft Corporation. Microsoft SQL Server, Version 7.0, 1999.
[Ngu89] G. T. Nguyen. Schema Evolution in Object-Oriented Database Systems.

Data & Knowledge Engineering, 4(1):43–67, July 1989.
[Ora99] Oracle Corporation. Oracle8i SQL Reference, Release 8.1.6, December

1999.
[PÖ97] R. J. Peters and M. T. Özsu. An Axiomatic Model of Dynamic Schema

Evolution in Objectbase Systems. ACM Transactions on Database Sys-
tems, 22(1):75–114, March 1997.

[RR95] Y.-G. Ra and E. A. Rundensteiner. A Transparent Object-Oriented
Schema Change Approach Using View Evolution. In P. S. Yu and A. L. P.
Chen, editors, Proc. of the 11th IEEE Int. Conf. on Data Engineering,
ICDE’95, pages 165–172. IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[SCR01] H. Su, K. T. Claypool, and E. A. Rundensteiner. Extending the Object
Query Language for Transparent Metadata Access. In H. Balsters, B. De
Brock, and S. Conrad, editors, Database Schema Evolution and Meta-
Modeling: 9th International Workshop on Foundations of Models and Lan-
guages for Data and Objects (FOMLADO/DEMM 2000), Lecture Notes
in Computer Science Vol. 2065, pages 181–200, Springer-Verlag, 2001.

[SKN89] X. Sun, N. N. Kamel, and L. M. Ni. Processing Implications on Queries.
IEEE Transactions on Software Engineering, 15(10):1168–1175, 1989.

[ST94] M. H. Scholl and M. Tresch. Evolution towards, in, and beyond Ob-
ject Databases. In K. von Luck and H. Marburger, editors, Management
and Processing of Complex Data Structures, Proc. of the 3rd Workshop
on Information Systems and Artificial Intelligence, Hamburg, Germany,
February/March 1994, Lecture Notes in Computer Science, Vol. 777, pages
64–82. Springer-Verlag, Berlin, 1994.

[Syb99] Sybase Inc. Transact-SQL User Guide, Version 11.0, 1999.
[SZ90] A. Skarra and S. B. Zdonik. Type Evolution in an Object-Oriented

Database. In A. F. Cárdenas and D. McLeod, editors, Research Founda-
tions in Object-Oriented and Semantic Database Systems, chapter 6, pages
137–155, Series in Data and Knowledge Base Systems, Prentice Hall, En-
glewood Cliffs, NJ, 1990.

[TK90] L. Tan and T. Katayama. Meta Operations for Type Management in
Object-Oriented Databases: A Lazy Mechanism for Schema Evolution.
In W. Kim, J.-M. Nicolas, and S. Nishio, editors, Deductive and Object-
Oriented Databases, Proc. of the 1st Int. Conf., DOOD’89, Kyoto, Japan,
December, 1989, pages 241–258. North-Holland, Amsterdam, 1990.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume II: The New Technologies. Computer Science Press, Rockville, MD,
1989.

	Introduction
	Schema Evolution in SQL-99
	Basic Schema Elements
	Creating, Altering, and Removing a Domain
	Creating, Altering, and Removing a User-Defined Type
	Creating, Altering, and Removing a Table
	Creating and Removing a View
	Creating and Removing an Assertion
	Creating, Altering, and Removing a Routine
	Creating and Removing a Trigger
	Creating and Removing Roles
	Granting and Revoking Privileges

	Comparison of Schema Evolution Constructs in SQL-99 and Commercial DBMS
	Domains and Assertions
	User-Defined Types
	Tables
	Views
	Procedures, Functions, and Triggers
	Roles and Privileges
	Constraints
	Renaming Schema Elements

	Some Final Remarks

