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Abstract

The functionality of applications is increasingly being
made available by services. General concepts and stan-
dards like SOAP, WSDL, and UDDI support the discov-
ery and invocation of single web services. State–of–the–
art process management is conceptually based on a cen-
tralized process manager. The resources of this coordina-
tor limit the number of concurrent process executions, es-
pecially since the coordinator has to persistently store each
state change for recovery purposes. In this paper, we over-
come this limitation by executing processes in a peer-to-
peer way exploiting all nodes of the system. By distributing
the execution and navigation costs, we can achieve a higher
degree of scalability allowing for a much larger through-
put of processes compared to centralized solutions. This pa-
pers describes our prototype systemOSIRIS, which imple-
ments such a true peer–to–peer process execution. We fur-
ther present very promising results verifying the advantages
over centralized process management in terms of scalabil-
ity.

1. Introduction

In the last years, information technology has undergone
several major changes. Especially the current trend towards
service-orientation, i.e., dedicated services that allow to ac-
cess data and/or applications, had a strong impact of infor-
mation systems and middleware and has radically changed
the way information processing takes place. In particular,
web services that can be invoked by common web proto-
cols (SOAP over HTTP) have led to the recent proliferation
of service-oriented computing. System support for the invo-
cation of single web services is widely available. However,
one of the most important tasks when dealing with web ser-
vices is to combine existing services into a coherent whole.
Such applications spanning several (web) service invoca-
tions are usually realized byprocesses. The platform inde-
pendent definitions like XML, SOAP, and WSDL further

simplify such a composition.In many application scenarios,
we can use processes for maintenance purposes to imple-
ment replication or to enforce consistency constraints over
different sources. This is done by automatically triggering
the execution of a process whenever the violation of a con-
straint has occurred. Furthermore, it is also natural for such
systems to implement accesses to data and queries from
users by processes that gather the information via differ-
ent service calls and aggregate the retrieved data according
to the user’s demand. As a result, the infrastructure of such
systems has to cope with large numbers of concurrent pro-
cesses and has to ensure the same quality of service as tradi-
tional database applications. For all these reasons, service-
orientation and process support come along with a set of
new challenges:

• Dynamics: New services and service providers may
enter or leave the system at any time, and the system
must keep track of such changes in parallel to service
invocations and process execution.

• Optimal Routing : Sophisticated routing strategies for
service invocations to distribute requests among ser-
vice providers at run-time using approximate knowl-
edge about availability and load.

• Reliability and Correctness: Processes have to be ex-
ecuted reliably and with dedicated correctness guaran-
tees even in case of failures.

• Scalability: The infrastructure must scale with the
number of services, processes, and users. Clearly, cen-
tralized systems will soon reach their limitations.
Therefore, each node of the community is equipped
with a small software layer which is part of the over-
all infrastructure. This layer also implements pro-
cess support in a peer–to–peer fashion and thereby
gets rid of a monolithic process management sys-
tem.

In view of these challenges, a number of groups
have started new projects (e.g., Infopipes [25], Object-
Globe [6], ISEE [20], METUFLOW [10] and MAR-
CAs [12], or eFlow [7]) breaking out of conventional
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Figure 1. Peer–to–peer process execution

technology. At ETH Zurich, the hyperdatabase vi-
sion [27, 28] was established several years ago with the ob-
jective to identify a new middleware infrastructure based
on well-understood concepts evolving from database tech-
nology. While database systems handle data records,
a hyperdatabase system deals with services and ser-
vice invocations. Services in turn may use a database
system. In short, a hyperdatabase takes care of opti-
mal routing similar to query optimization in a conventional
database, and it provides process support with transac-
tional guarantees over distributed components using ex-
isting services as a generalization of traditional database
transactions [30]. Most importantly and in contrast to tra-
ditional database technology, a hyperdatabase does not
follow a monolithic system architecture but is fully dis-
tributed over all participating nodes in a network. Ev-
ery node is equipped with an additional thin software
layer, a so-called hyperdatabase layer (HDB layer) as de-
picted in Figure 1. The HDB layer extends existing layers
like the TCP/IP stack with process related functionali-
ties. As such, the HDB layer abstracts from service rout-
ing much like TCP/IP abstracts from data packet routing.
Moreover, while the TCP/IP protocol guarantees cor-
rect transfer of bytes, the HDB layer guarantees the
correct shipment of process instances. Of course, a dis-
tributed process infrastructure requires that each service
provider locally installs this additional software layer. Ide-
ally, this layer comes together with the operating sys-
tem much like the TCP/IP stack does (comparable to the
.NET framework [23]).

We have implemented a prototype system called
OSIRIS (short for Open Service Infrastructure for Reliable
and Integrated Process Support) following these princi-

ples. While previous papers describe the hyperdatabase
vision [27], the process model [30], and the general ar-
chitecture [31], in the following, we concentrate on the
discussion and evaluation of OSIRIS as a reliable and scal-
able infrastructure for the management of services and
processes. The contributions of this paper are:

• It describes how to provide process execution in a true
peer–to–peer manner.

• The presented solution has sophisticated failure han-
dling mechanisms. Note that failure handling in a dis-
tributed environment is more complex compared to
failure handling in a central process engine.

• We present evaluation results with OSIRISusing a first
benchmark and show significant scalability improve-
ments compared to central solutions.

In the following, we will summarize the OSIRIS archi-
tecture and discuss the main architectural decisions in Sec-
tion 2. Section 3 contains the details of our peer-to-peer pro-
cess execution, which are necessary to understand our eval-
uation results described in section 4. We will discuss related
work in section 5 and conclude with open problems and fu-
ture work in section 6.

2. Process Model and Architecture of OSIRIS

In this section, we summarize our earlier work on the
topics of process models [30], execution guarantees [29],
and the architecture of large scale peer-to-peer systems of-
fering web services [31]. In extension to this previous work,
the next two sections will describe and evaluate true peer-
to-peer process execution, and will discuss the advantages
of this approach compared to traditional centralized solu-
tions in terms of scalability.

2.1. OSIRIS Process Model

A process corresponds to an ordered set ofactivities.
The order of these activities defines the sequence of ser-
vice calls sinceactivities are directly mapped to existing
services (which again can be processes). The process man-
ager can invoke an activity if and only if all its pre-ordered
activities have finished and conditions on its execution are
fulfilled. Intra process parallelization is implemented with
parallel branches in the process (fork-join) whereby a pro-
cess (at least conceptually) always has exactly one start ac-
tivity and one final activity1. We define the data flow with
mappings from a data space in the process instance, called
whiteboard, to the service request parameters, and back
from the response values to the whiteboard after execution.
Note that this implies that each branch of the process has its

1 This is required for the typical request-reply model of service infras-
tructures (a process is again a service).



own version of the whiteboard (no data flow between paral-
lel branches is possible) and that these versions have to be
merged when joining two or more branches. Our model also
allows for loops and conditions on edges.

With respect to quality of service, OSIRIS follows the
approach of transactional processes [30]. This model bases
on the flexible transaction model [13] and guarantees cor-
rect process termination. Each activity is eithercompensa-
table, retriable, or pivot. The effects of compensatable ac-
tivities can be semantically undone after the corresponding
service invocation has successfully returned. An activity is
pivot when it is not compensatable. Retriable activities are
guaranteed to terminate correctly, even if they have to be in-
voked repeatedly. In this case, the last invocation succeeds
while all previous invocations of this activity do not leave
any effects. A process can contain several pivot activities,
but it is required that there is a guaranteed successful path
to a termination state after the pivot element, and that roll-
back of a process instance in case of a failure of the pivot
element is feasible (rollback may include the invocation of
compensation steps back to a state reflecting a successful
execution from which forward recovery is possible, i.e., by
alternative execution paths; this is required if there are sev-
eral pivot elements in the process). Moreover, transactional
processes can specify preferences when providing multiple
correct paths. OSIRIS comes together with O’GRAPE [33],
our Java–based process modeling tool that supports a de-
signer in defining and validating processes.

2.2. Principles of the Architecture

The architecture of ORISIS is driven by the goal of im-
plementing a true peer-to-peer process execution engine for
the above process model. Thereby, it follows our hyper-
database vision: process execution involves only those ma-
chines of the network that offer a service required by the
process definition. There should be no central synchroniza-
tion and navigation node to drive the process instances. As
we will see, true peer-to-peer process execution is mainly a
problem of efficient metadata replication.

The architecture of OSIRIS is split into two parts: firstly,
each node of the network runs a hyperdatabase (HDB) layer
that provides local services for routing and process navi-
gation as envisioned in the introduction. Secondly, OSIRIS

runs a number of global meta data repositories holding in-
formation about process definitions, subscription lists, ser-
vice providers, load information, etc. (cf. Figure 1, mid-
dle box). These global repositories store meta information
in XML documents, which are essential to run the sys-
tem. However, the HDB layers that actually execute pro-
cesses should not have to query meta information from
the global repositories. Rather, a push mechanism repli-
cates those parts of meta information towards the HDB lay-
ers that they require to fulfill their tasks. For instance, if a

node is involved in executing processA, the definition and
any changes to that definition are pushed from the process
repository to the HDB layer.

From another perspective, the HDB layers perform their
tasks based only on local versions of the global meta in-
formation. Often, it is even sufficient to hold only approxi-
mate versions: for instance, load information of nodes is re-
quired by the HDB layer to balance the work (i.e., process
activities) among the available service providers. It is suf-
ficient if this load information is only approximately accu-
rate. On the other hand, changes on process definitions have
to be propagated immediately to avoid version conflicts.

2.3. Replication of Meta Information

It is important to understand that the global meta data
repositories are not directly involved in the execution of pro-
cesses. They just maintain meta information and distribute
this information to all the HDB layers when needed. In pre-
vious work, we have introduced two measures to reduce the
amount of data being transferred to the nodes (see [31] for
more details). Firstly, we use a publish/subscribe scheme
with path predicates on the XML document for replication.
The path predicate of the subscription selects those parts of
the document that a node locally requires: for instance, as-
sume that there are two processesA andB, but an HDB
layer is only involved in the execution of processA, i.e.,
none of the services required by processB is provided by
this node. Obviously, this HDB layer only subscribes for
the portion of process meta data that includes the defini-
tion of A but not the one ofB. The same holds true for
other pieces of meta information: an HDB layer only re-
quires load information of nodes it eventually will send re-
quests to. The publish/subscribe scheme then ensures that
changes at the central XML document are transferred if and
only if they are covered by the path predicate. In the previ-
ous example, the process repository would not push updates
to process definitionB to that specific HDB layer.

Secondly, we use so-called freshness predicates to fur-
ther reduce the number of publications. Freshness predi-
cates are especially useful for replication of very dynamic
meta data like load information: small changes of the load
of a node are not significant for load balancing. To avoid
such unnecessary updates, each subscription at a meta data
repository further comprises a freshness predicate that de-
fines under what circumstances a new data item has to be
published. An ”eager” freshness, for instance, denotes that
the repository has to publish every change as soon as pos-
sible2. In the case of load information, a freshness predi-
cate may denote that updates are only published if the dif-

2 We do not provide a freshness predicate with transactional guarantees,
i.e., the update at the central repository is separated from the updates
at the HDB layers. Otherwise, costs for updates would negatively af-
fect the scalability of our approach.



ference between the global version and the local version are
above 20%. Conceptually, the freshness predicate is a piece
of code sent with the subscription that decides based on the
global version and local version at the peer whether the up-
date has to be published. As an optimization, the global
repositories keep track of the current states of the subscribed
peers and of the changes performed meanwhile.

3. P2P Process Execution

As described before, we deploy a true peer–to–peer sys-
tem for process navigation, but gather and maintain meta
data in centralized repositories (although such a repository
may run on a cluster to distribute the load). To benefit from
the P2P approach in terms of scalability, OSIRIScompletely
separates process navigation from meta data replication.
This section describes in detail our peer–to–peer based pro-
cess execution system. Especially, we want to address the
following key problems:

• How do nodes know where to migrate a process in-
stances to next? What information is needed for this?

• How do nodes execute processes? What minimal in-
formation is needed to reduce replication costs?

• How can the system overcome severe failures while
still providing transactional guarantees?

3.1. Routing by Late Service Binding

To benefit from load balancing over different service
providers, application designers do not encode the service
bindings of activities at development time. Rather, they only
specify the type of service to be invoked together with its
parameters. The concrete service binding is selected at run-
time depending on the load of machines and costs of invok-
ing a particular service instance. For that purpose, OSIRIS

requires each service provider to subscribe for tasks it can
fulfill. Alternatively, an application developer can register
these subscriptions on behalf of the service provider. Each
subscription contains two XSLT scripts to map the generic
interface of a service type to the concrete interface of the
service provider as the concrete interface may have different
parameters and result values. At runtime, the HDB layer se-
lects a service provider based on costs, parameters, and con-
ditions on its services. This is similar to work on automatic
service discovery with the exception that OSIRIS requires,
for performance reasons, that service discovery is precom-
puted and repeatedly updated for each activity in each pro-
cess type. However, selection among the detected services
is still performed at execution time.

Apart of service selection, process navigation and thus
instance migration also requires to select a node where the
next activity should be executed. In many cases, we may

want to replicate a service over the entire network follow-
ing the ideas of grid computing. Hence, it is not enough to
select only a concrete service type. We also have to select an
appropriate node to execute that service. OSIRIS uses tradi-
tional load balancing methods to select a node trying to ad-
vance process instances as fast as possible.

The tasks described above require that each HDB layer
knows about subscriptions of service providers to service
types (including the mappings) and the load of machines
providing these services. OSIRIS maintains this informa-
tion in centralized repositories (Figure 1) and uses its in-
herent replication feature to distribute this meta informa-
tion over the network. We can deploy path predicates and
freshness predicates to dramatically reduce the number of
updates propagated by the repositories to its peers.

Communication. Once the HDB layer has identified the
next node(s) to migrate the current process instance to, it
deploys a 2PC protocol to ship the instance data. If trans-
portation is not possible, e.g., in case of a disconnection of
a mobile device or network problems, the HDB layer tries
to find an alternative node. If this also fails, the instance data
remains at the node until a suitable service becomes avail-
able, or, if alternative branches in the process model exist,
process execution is continued with an alternative branch.
Note that the 2PC protocol is rather simple as it involves ex-
actly two nodes. It guarantees that instance data is not lost
nor duplicated in cases of network, hardware or software
problems. The only exception is the case that a node com-
pletely disappears. Then, all the process instances that cur-
rently are executed on that node would also disappear and,
hence, would not be able to finish. Such situations are diffi-
cult to solve automatically as the difference between a nor-
mal disconnection of a mobile device and the permanent
disconnection of a node is hard to detect.

Fork/Join Problem. A fork is simply the migration of a
process instance to different peers (or the same peer, but
executing independent activities). However, to join these
branches, the nodes executing the last activity of a branch
must know where to meet with the other branch(es). Of
course, a costly broadcast communication protocol to detect
the partners of the join should be avoided. Instead, OSIRIS

assigns each process instance a dedicated, reliable node for
joining branches at instance creation time. The join is per-
formed by an additional activity automatically inserted be-
fore the actual join node in the model. The service of this
activity is stateful and decides when to advance the instance
to the actual join node (e.g., some branches may have con-
ditions or denote unused alternatives; see below). It also
merges the whiteboards of the different branches accord-
ing to the process model. Afterwards, the merged process
instance is routed to a node executing the actual join activ-
ity. Note that each join in a process instance is handled by
the same node. But different instances can of course have
different join nodes.
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3.2. Deployment and Execution of Processes

In principle, each node of the network could replicate all
process definitions and execute process instances with the
control flow and data flow definitions of the model. How-
ever, this would require large amounts of data to be repli-
cated over the entire network3. Rather, we only want to
replicate those pieces of process definitions that are locally
required to drive the execution of those process instances
that potentially visit a node.

Our approach within OSIRIS is to decompose a process
definition at deployment time into a set ofexecution units.
Each execution unit contains the information to execute the
corresponding activity and to navigate the process depend-
ing on the result of the service invocation. A node only sub-
scribes itself for those execution units of processes that in-
voke a locally available service. Consequently, the amount
of replicated data significantly reduces. When a designer de-
ploys a new process definition, the nodes that may execute
one of its activities automatically receive the correspond-
ing execution units.

Process Transformation.In general, we can easily ex-
tract execution units from the process definitions as they ba-
sically correspond to pairs of consecutive activities. How-
ever, there are some special cases that require further expla-
nations. Our transformation algorithm transforms a graph-
based process definition into a set of execution units us-
ing two phases (cf. Figure 2). In the first phase, the graphi-
cal notation is enriched with additional activities and edges.
Each process requires a singlesourceactivity and end activ-
ity. Furthermore, every join is preceded by a specialjoin ac-
tivity (as discussed in the previous subsection; e.g., nodeJ1
in Figure 2).

We further have to add edges to the graph. Consider the
example process at the left hand side of Figure 2: activityB
is followed by activitiesC andD. The arrow between the

3 Note that each activity comprises two XSLT scripts for mapping
whiteboard data to service request parameters and for mapping the re-
sult of the service call back into the whiteboard.

two edges fromB to C andB to D denotes the preference
order of the execution paths, i.e., if serviceC fails, the alter-
native path over serviceD is followed. The problem arises
at the join: it expects two incoming edges but only exactly
one of them arrives at the join at runtime. To solve this prob-
lem, assume that the service call atC was successful. In
this case, we know that its alternative branch overD will
not be executed. Hence, we can removeD from the process
model and all subsequent nodes which are no longer reach-
able. This is typically known as dead path elimination per-
formed at runtime by the process manager. OSIRIS detects
such dead paths already at deployment time for all possible
cases, but resolves them at execution time: if a dead path
leads to a join node, we must inform this node that the cor-
responding path never arrives. To do so, we add a special
edge fromC to J1 that signals the join node at execution
time that the path overD will not arrive (this edgeΩ actu-
ally replaces the path overD). Analogously, we have to add
edges for compensations (again taking care of join nodes)
and execution of alternatives. Due to space restriction, we
omit more detailed descriptions of these cases.

The second phase of the algorithm, as depicted in Fig-
ure 2 on the right hand side, divides the extended graph
into execution units for each node of the graph. The nav-
igation tables directly result from the edges (including the
ones from dead path elimination) and preference orders.

3.3. Failure Handling

Failure handling in a distributed environment is more dif-
ficult than in a centralized one. The main reason is that there
is no global knowledge about where a process instance is
currently executed. In Addition, costly broadcast messages
to detect the whereabouts of an instance to be avoided. In
OSIRIS, we handle failures at three different levels where
the first two levels also apply for centralized process man-
agement.

At the first level, the process model, we provide alterna-
tives, compensation, restarting of activities to react on fail-



ures. Our modeling tool O’GRAPE verifies the correctness
of a process based on the transactional process model. If the
definition is correct, our navigation model guarantees that
process execution ends in a well defined final state regard-
less of failures of service invocations. For compensation of
activities, we further have to keep a history of where an ac-
tivity has been executed. Compensation is then routed back
on the same path as the process instance has advanced.

At the second level, the HDB layer, persistent queues and
the 2PC protocol guarantee that state changes of process in-
stances and results of services are made persistent and are
recoverable4, i.e., queued transactions [4] are supported. If
the HDB layer fails (hardware or software problem), it re-
covers the current state of its active process instances us-
ing traditional database technologies, re-instantiates service
calls if necessary, and continues with process navigation of
instances currently residing at this node.

At the third level, the global level, we have to deal with
disconnection of nodes. A disconnection can have several
reasons: network splits or failures, node crashes, discon-
nection of mobile devices, or permanent removal of nodes.
When migrating a process instance from one node to an-
other, a 2PC protocol between the two nodes guarantees that
the instance data is safely transferred. If migration fails, the
source node simply selects another destination for the mi-
gration or delays migration if the failed node was the only
provider of that service. More difficult to solve is the situa-
tion when a node permanently disappears or is disconnected
for a too long period. In OSIRIS, we allow application devel-
opers to specify timeouts and assign special observer nodes
to watch critical peers (critical peers are non-reliable nodes
that are likely to disconnect, e.g., mobile devices). If a criti-
cal peer disconnects and the timeout is reached, the process
instance is migrated to an other, currently available node.
When the formerly disconnected node reconnects, it is in-
formed by the observer that its version of the process in-
stance is no longer valid. However, this approach does not
work in all cases, e.g., a non-compensatable activity cannot
have a timeout since we cannot invalidate the process in-
stance if the node reconnects and already has executed the
activity. Again, O’GRAPE supports the application devel-
oper in validating the correctness of process model.

4. Performance Evaluations

In this section, we investigate the potential of P2P pro-
cess execution with a set of experiments. The goal is to eval-
uate that, at least for a basic setup and workload, P2P execu-
tion scales better than a centralized approach and that meta
data management does not hinder scalability.

4 This actually is only true if the service supports the 2PC protocol. Oth-
erwise, the result might get lost if the host fails immediately after the
delivery of the result and before it is made persistent by the HDB.

4.1. Evaluation Settings

In these preliminary experiments, we use idealized work-
loads and mainly investigate navigation costs and load bal-
ancing features of OSIRIS compared to an equivalent cen-
tralized approach. For the sake of comparison, we have
modified OSIRIS slightly in order to allow for centralized
navigation of processes. We call this modified version ”O-
Central”. While both systems, i.e., OSIRIS and O-Central,
share the same implementation, modules and configura-
tions, they only differ in the way they execute processes.
In OSIRIS, each node can instantiate and advance a process
using the P2P approach described in Section 3. O-Central,
on the other hand, consists of an additional peer that navi-
gates the processes but delegates the execution of activities
to the other peers. This approach represents a typical setup
with coordination of distributed (web) services by a central
process management system (e.g., IBM WebSphere Appli-
cation Process Choreographer [34]). Using the same infras-
tructure and algorithms allows us to directly compare the
performance figures of our P2P approach with the ones of a
centralized process manager.

Our experimental setup determines the scalability
characteristics of the two approaches under investiga-
tion (OSIRISvs. O–Central). We use a linear process invok-
ing generic activities that are available at all peers. This pro-
cess corresponds to a typically short running data request
process of clients. Each activity accrues costs of 2 sec-
onds on average, and the overall execution costs of a
process is 10 seconds on average (5 activities on aver-
age). Clients are simulated with a queuing model trig-
gering a process instantiation every∆t milliseconds on
average. In order to visualize the scalability characteris-
tics, we decrease∆t every minute by10%. Thereby, the
load of the system steadily increases and, at some point, we
may observe an overload situation, i.e., processes are sig-
nificantly delayed due to full work queues at the peers and
at the process manager. This experiment is repeated for dif-
ferent numbers of peers. Theoretically, the system should
improve the more peers are available for activity execu-
tion, i.e., we should observe the break-down at a later point
in time.

4.2. Scalability of Peer–to–Peer Navigation

The graphs in Figure 3 presents the results of the sce-
nario described above for the OSIRISand the O-Central im-
plementation. The x-axis denotes the time in minutes from
the start of the scenario, and the y-axis denotes the num-
ber of started processes (thick line) and the number of fin-
ished processes (all other plots) in an interval of one minute.
As described in the scenario, the number of started pro-
cesses (thick line) increases every minute by10% and stops
at roughly550 processes per minute. After11 minutes, the
clients stop creating new processes and the system may
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Figure 3. Process Throughput in Different Configuration Settings

work off all active instances. The remaining plots (the ones
with markers) denote the number of finished processes per
minute for a setup with2, 4, 8, 16 and24 peers.

Let us first consider Figure 3(a) which depicts the
throughput of OSIRIS. As we can see, P2P execution with
only a few nodes (less than16) is not capable to han-
dle the full workload, i.e., the system breaks down
with only a small number of concurrent processes (be-
tween 50 and 200). However, adding more peers to the
system successfully delays the point where the system be-
comes overloaded. In fact, with24 peers, OSIRIS is able to
cope with a maximum load of550 concurrent process in-
stances which is not the case for the centralized approach
O-Central, depicted by Figure 3(b). Although the sys-
tem is able to significantly improve from2 peers to8
peers, it does not scale any further beyond8 peers. The rea-
son for this behavior is due to the central process navi-
gation: it only allows for a limited number of concurrent
process executions (logging, auditing, persistence, naviga-
tion, etc.) at a time. The throughput of the central approach
could be improved by using faster machines or by us-
ing a clustered approach like in IBM WebSphere [34].
However, the limitation on the number of concurrent pro-
cesses always remains regardless of how many peers
we add to the system. OSIRIS, on the other hand, ap-
pears to scale almost perfectly with the number of peers in
the network. If the workload becomes too large, we sim-
ply can increase the number of peers to cope with the addi-
tional load. In the central solution, one would have to re-
place the central machine with a much faster one to
cope with an increased workload (if such a machine ex-
ists).

5. Related Work

The presented OSIRIS infrastructure provides a scalable
distributed process navigation platform. To achieve this, it

combines a rich set of aspects. Based on the hyperdatabase
vision [28], we have combined ideas from process man-
agement, peer–to–peer networks ([3] gives an overview),
database technology, and GRID [14] infrastructures. All
parts are glued together to a value-added, coherent whole.
Processes in OSIRIS are running within a peer–to–peer
community that is established by the individual service
providers (in [12], service providers acting as peers are
called MARCAs). However, in contrast to relatively sim-
ple file sharing applications, the execution of processes over
services requires a significantly richer set of functionality.
Therefore, OSIRIS implements process management con-
cepts like state–of–the art systems (e.g., IBM WebSphere
Application Process Choreographer [34], BizTalk [21]).
These systems realize a centralized approach, where ev-
ery call to a service provider returns to the process en-
gine. Albeit navigation tasks can be distributed in a clus-
ter, storage of process instances usually is done by using a
single, centralized database instance (products like Oracle
10g [24] can also support clustered databases). Some proto-
type systems features similar architectures (e.g., Mentor–
lite [16], SDM [2]). Although executing processes in a
peer-to-peer way without involving a centralized compo-
nent, OSIRIS provides transactional guarantees, following
the model of transactional processes [30]. METUFLOW
[10] and TransCoop [1] also provide transactional seman-
tics for workflows in a distributed environment.

In the distributed Mentor–lite [16] approach, the setting
of the process engine in a cluster can be changed actively
using a configuration tool, while OSIRIS distributes pro-
cess execution over all available service providers, and lo-
cally runs processes on provider hosts. This requires a mid-
dleware layer –the local HDB layer– on every participat-
ing component resp. service provider. A wide range of mid-
dleware solutions like .NET [23], J2EE implementations or
CORBA follows similar ideas. In terms of process man-
agement, the OSIRIS middleware however provides much



more functionality, in particular meta data replication, au-
diting, and system workload monitoring are also part of the
OSIRIS middleware.

Besides peer-to-peer process execution, dynamics both
in terms of the current service providers as well as in
terms of changes of their load are addressed by OSIRIS.
Even dynamic changes of process models are supported.
OSIRIS guarantees that each process instance is executed
consistently, following the version of the process at in-
stance creation time. For several reasons, e.g., medical treat-
ment running processes instances have to migrate to the
newest process definition, therefore systems in this field like
ADEPTflex [26] or HematoWork [22] have to deal with
process instance evolution. Ideas for migrating running pro-
cess instances are currently not implemented in OSIRIS.
However, these concepts are orthogonal and could be seam-
lessly integrated. The execution of process instances in
OSIRIS follows late service binding which realizes a run-
time lookup for running instances of a certain type. Other
systems like, for instance, ServiceGlobe [19] implement a
service discovery based on tModel types, or include ser-
vice discovery into the process navigation (e.g., ISEE [20],
eFlow [7] or CrossFlow [17]). OSIRIS’ service discovery re-
lies on precomputed tables, available at every node. These
tables allow for a very fast decision at runtime between
several semantic equivalent service types. The content of
these tables can be maintained manually or using an au-
tomated semantic approach [8, 32]. Each service type is
bound to a publish–and–subscribe topic that provides a
channel to the actual providers. Similar ideas can also be
found at other several process management systems (see,
for instance, [9]). However, conventional implementations
of publish–and–subscribe techniques either require a cen-
tralized publish/subscribe broker or use broadcast technolo-
gies. In contrast, the OSIRIS peer–to–peer solution needs
neither of them, but uses transparent routing mechanisms
similar to those of MIRS [15] or DBCache [5].

6. Conclusions and Future Work

Service-oriented computing not only necessitates the
possibility to combine existing services to applications at
a higher level of abstraction (processes), these applications
also impose certain requirements on the infrastructure for
process support. In addition to the dynamics of service
providers, scalability in terms of the number of services and
processes the infrastructure can support is an important is-
sue. State–of–the–art process management systems feature
highly optimized algorithms to provide a certain degree of
throughput and performance. For that, they however require
specialized, powerful hardware. Nevertheless, the perfor-
mance and throughput of a centralized approach to process
management will still be limited when the number of con-
current process instances further increases. A true peer–to–

peer based approach, in contrast, where the process execu-
tion is distributed among the peers of the entire network is
able to significantly outperform a centralized approach in
terms of scalability.

In this paper, we have presented the OSIRIS system as
an implementation of a hyperdatabase that provides pro-
cess support in a true peer-to-peer way. Peer-to-peer pro-
cess execution is achieved by collecting metadata on the
available processes, providers, and the load of the latter us-
ing global repositories and by applying sophisticated repli-
cation algorithms to distribute this metadata. Local hyper-
database layers associated with each service provider man-
age replicas of global metadata that is sufficient to locally
drive the execution of a process. However, in order to pro-
vide a reliable infrastructure for process execution even
without central control, OSIRIS applies sophisticated fail-
ure handling strategies. Another important aspect is to sup-
port correct concurrent process executions. To do this –also
in a truly distributed way– we are currently investigating
distributed concurrency control protocols [18]. These proto-
cols will enable process synchronization without introduc-
ing a centralized component through which each process in-
stance has to be routed. Moreover, we have presented first
experiments underlining the scalability features of OSIRIS.
In a next step, we want to more carefully investigate under
what circumstances the peer-to-peer approach is more ben-
eficial than a centralized approach. For that purpose, we are
currently developing a benchmark suite for various applica-
tion scenarios (including failure handling and concurrency)
which should reveal the strengths and weaknesses of differ-
ent system architectures.
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