FAS — a Freshness-Sensitive Coordination Middleware
for a Cluster of OLAP Components

Uwe Rohm Klemens Bohm*

Hans-Jorg Schek Heiko Schuldt

Swiss Federal Institute of Technology
ETH Zentrum, 8092 Zurich, Switzerland
{roehm,boehm,schek,schuldt} @inf.ethz.ch

Abstract

Data warehouses offer a compromise be-
tween freshness of data and query evalua-
tion times. However, a fixed preference ra-
tio between these two variables is too undif-
ferentiated. With our approach, clients sub-
mit a query together with an explicit fresh-
ness limit as a new Quality-of-Service pa-
rameter. Our architecture is a cluster of
databases. The contribution of this article
is the design, implementation, and evalua-
tion of a coordination middleware. It sched-
ules and routes updates and queries to clus-
ter nodes, aiming at a high throughput of
OLAP queries. The core of the middleware
is a new protocol called FAS (Freshness-
Aware Scheduling) with the following qual-
itative characteristics: (1) The requested
freshness limit of queries is always met,
and (2) data accessed within a transaction
is consistent, independent of its freshness.
Our evaluation shows that FAS has the
following nice properties: OLAP query-
evaluation times are close (within 10%) to
the ones of an idealistic setup with no up-
dates. FAS allows to effectively trade 'up-
to-dateness’ for query performance. Even
when all queries request fresh data, FAS
clearly outperforms synchronous replica-
tion. Finally, mean response times are inde-
pendent of the cluster size (upto 128 nodes).

* Current affiliation: Otto-von-Guericke-Universitit Magde-
burg, Germany

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

Data warehouses are closely tied to OLAP, i.e., on-
line analytical processing of the vast amount of data
of an organization. They typically offer a compro-
mise between freshness of data and warehouse main-
tenance costs. Different application scenarios and
users however have different preferences in this re-
spect, and a fixed preference ratio is too undifferen-
tiated. With our approach, clients submit a query
together with an explicit freshness limit as a new
Quality-of-Service parameter. In other words, read-
ers may decide infinitely variable how much up-to-
date the data accessed should be. The goal is to
use this additional information to improve through-
put. The concern of this article is the through-
put of a stream of OLAP queries, i.e., we assume
a read-mostly environment with many concurrent
readers. This complements recent work on replica-
tion in OLTP scenarios, e.g., [6, 17].

The object of this study is a cluster of databases
[18, 14]: this is a cluster of commodity computers,
each node running an off-the-shelf database manage-
ment system as transactional storage layer. This pa-
per assumes that all cluster nodes are homogeneous,
i.e., they run the same DBMS with the same database
schema. Each node holds a full copy of the database,
but the freshness of these copies may vary between
cluster nodes. Finally, we assume that there is a
coordination middleware layer on top of the clus-
ter (cf. Figure 1). Clients submit query or update
transactions to this middleware, instead of directly
communicating with specific cluster nodes. The mid-
dleware schedules and routes updates and queries to
cluster nodes. The scheduler generates a correct in-
terleaved execution order. In general, scheduling al-
lows for several cluster nodes where a query may ex-
ecute. The router chooses one of these nodes for each
query. The challenge with such a cluster architecture
is (1) to achieve high performance with regard to the
OLAP query stream, (2) to guarantee global correct-
ness at the same time, and (3) to satisfy the freshness

requirements of all queries. This goes beyond exist-
ing replication schemes which only guarantee con-
sistency but not a specific freshness.

Requirement (2) is important because most OLAP
applications are susceptible to inconsistencies even
though they do not mind stale data: For instance,
think of a scenario where the sum of the sales in sales
regions ’California North’ and ’California South’ is
not equal to the one of ’California’, i.e., the state as
a whole. Clearly, it does not depend on the freshness
of the data whether or not this is acceptable.

Our contribution is the design, implementation,
and evaluation of a middleware that meets the re-
quirements identified so far. Its core is a new pro-
tocol called FAS (Freshness-Aware Scheduling) with
the following characteristics: The middleware directs
all updates to a designated OLTP node. It routes a
query that is part of a read transaction to one of the
remaining cluster nodes, subsequently referred to as
OLAP nodes. It propagates updates to OLAP nodes
by deferred bulk refresh transactions. Refresh trans-
actions start depending on the freshness of the cluster
nodes. Our paper will investigate various alternatives
to accomplish this. Further important questions are
as follows: Are global correctness and scalability of
OLAP throughput mutually exclusive? Can we effec-
tively trade freshness of data for query performance?
How expensive is access to up-to-date data using our
middleware?

To answer such questions, we have fully imple-
mented a prototype and have conducted an exten-
sive experimental evaluation of FAS. It turns out that
it has the following characteristics: our middleware
does not become a bottleneck for OLAP even for
large clusters of up to 128 nodes. Response times of
clients which accept up to 20 minutes old (but nev-
ertheless consistent) data are about 30% faster than
those of clients asking for up-to-date data. Even if
all clients ask for up-to-date data, query and update
throughput is higher by more than an order of mag-
nitude as compared to synchronous updating.

Finally, researchers recently have proposed data
compression schemes and approximative query-
evaluation techniques, e.g., [7], including techniques
that allow to trade result quality for query-answering
time. It is important to note that they are orthogonal
to our current concern. We have consciously decided
to keep these issues separate, in order to carry out
a ’'noise-free’, quantitative assessment of our mid-
dleware. This is why physical design on all cluster
nodes is identical. For the same reason, this study
does not deal with intra-transaction parallelism. Of
course, combining these techniques is natural and
will lead to even better performance than the one
from this study that is already pleasingly good.

This paper is organized as follows: Section 2
gives an overview of the system architecture. The

next section presents freshness-aware scheduling in
more detail. Section 4 reports on an extensive quan-
titative evaluation of FAS. Section 5 reviews related
work. Section 6 concludes.

2 System Model and Architecture

Types of transactions. With regard to transac-
tions submitted by clients, i.e., client transactions,
we distinguish between read-only (OLAP) transac-
tions and update transactions. A read-only transac-
tion only consists of queries. An update transaction
comprises at least one insert, delete, or update state-
ment — in the following shortly referred to as updates
— next to arbitrarily many further SQL statements.
In case of a read-only transaction, the client speci-
fies a freshness limit for the data accessed. Further-
more, decoupled refresh transactions propagate up-
dates through the cluster.

Architecture. A cluster of databases is a clus-
ter of commodity PCs, each running an off-the-shelf
commercial database system (DBMS) as transac-
tional storage layer. We also refer to a database at
the cluster nodes as a component DBMS. This paper
assumes that all cluster nodes are homogeneous, i.e.,
they run the same DBMS and have the same logical
database design. We distinguish between a dedicated
OLTP node and n OLAP nodes. There is a coordina-
tion middleware, also referred to as coordinator, that
administers the cluster. It is responsible for schedul-
ing, routing, and logging of the incoming requests.
While the cluster consists of off-the-shelf hardware
and software components, we have implemented the
cluster coordinator ourselves. It comprises an input
queue, a scheduler, a router, a refresher, and a log-
ger (cf. Figure 1). Clients submit read-only and up-
date transactions to the middleware. The OLTP node
serves as a primary node where all updates will first
be executed. Queries arrive at an input queue. The

updates query qjery qujery

Coordination Middleware

,,,,,,,,, >)
log entry
og

InputQueue
State
Info. Logger|[
Refresher(......] = S(:’l::tu;:r gg

/ML

[
iy v

[cDBMmS, | [cDBMS, |
OLTP node Node 1 Node n

Figure 1: System Architecture.

input queue is not processed in a ’first-in-first-out’
manner. Instead, the scheduler decides in which or-
der to process the incoming requests (a waiting time
limit avoids starvation). There typically are several

OLAP nodes where a query of a read transaction may
execute. The router chooses one of these nodes for
each query. To do so, the coordination middleware
maintains some global system state information, e.g.,
the freshness of each node.

Transaction management by the coordination
middleware guarantees global correctness and con-
sistency. FAS deploys a two-layered open-nested
transaction model [23]: The queries of read-only
transactions as submitted by clients are executed as
separate subtransactions in the component DBMSs
(cf. Section 3.3). The coordination middleware also
contains a global logger. It keeps track of the up-
date transactions on the OLTP node and their decou-
pled refresh transactions on the OLAP nodes. The
latter are controlled by the refresher. This allows to
be globally correct without distributed commit pro-
cessing as with, e.g., two-phase-commit (2PC).

3 Freshness-Aware Scheduling

Freshness-aware scheduling (FAS) comprises repli-
cation management and mechanisms of multiversion
concurrency control. The notion of freshness of data
is crucial in the context of FAS. We will presently
discuss freshness metrics, before introducing FAS in
more detail. Subsection 3.3 describes how to apply
the concepts of FAS to our architecture, while Sub-
section 3.4 presents the actual FAS protocol. Finally,
Subsection 3.5 discusses refreshment strategies.

3.1 Freshness of Data

Freshness measures are closely related to the notion
of coherency [2, 9, 8]. With our approach, a so-called
freshness index f(d) € [0, 1] measures the freshness
of some data d. This freshness index reflects how
much the data has deviated from the up-to-date ver-
sion. Intuitively, a freshness index of 1 means that
the data is up-to-date, while an index of O tells us
that the data is “infinitely” outdated. There are sev-
eral freshness metrics possible [20]. Delay Freshness
is workload-independent and is the most intuitive al-
ternative of specifying the freshness needs of a client.

Delay freshness reflects how late a certain cluster
node is as compared to the up-to-date OLTP node. It
is based on the period of time between the last prop-
agated update and the most recent update on the up-
to-date node. Let 7(c¢) denote the commit time of the
last propagated update transaction on an OLAP node
¢, and 7(cp) the commit time of the most recent up-
date transaction on the OLTP node. Then the delay

freshness index is defined as f(c) = TT((;])).

With our implementation of FAS, the freshness
index is computed at the level of entire databases.
In principle, this granularity could also be finer, e.g.,

on the level of relations. We are however interested

in the performance characteristics of freshness-aware
scheduling with many nodes, e.g., more than a hun-
dred. With such numbers, the finer granularity on
the, say, level of relations would require consider-
ably more effort from the scheduler. In particular,
this would increase the overhead of both bookkeep-
ing and the propagation of updates. Hence, we do not
follow up on such alternatives in this current study,
and leave this for future work.

3.2 Overview of Freshness-Aware Scheduling

FAS interleaves the execution of read-only transac-
tions and update transactions. This will improve the
freshness of the data accessed by queries. They may
also access up-to-date data, if requested. However,
we do not want to sacrifice correctness — the proto-
col shall guarantee one-copy serializability [3].

With FAS, individual queries access just one clus-
ter node. However, the router can send each query of
a read-only transaction to a different OLAP node in
order to improve performance [22].

Replication and Correctness. A naive ap-
proach to global correctness would use synchronous
replication where each update immediately goes to
all replicas, also referred to as eager replication.
However, such approaches do not scale with the clus-
ter size [10, 4]. Hence, FAS propagates updates
asynchronously. It follows a primary-copy replica-
tion scheme with deferred refreshment.

The coordination middleware executes updates
first on the OLTP node. The number of update trans-
actions that run in parallel on the OLTP node is
not restricted. After an update transaction finishes,
as soon as a refresh is activated (cf. Section 3.6),
the refresher propagates the changes to the remain-
ing replicas using decoupled refresh transactions. In
more detail, each of them refreshes one node and is
activated separately. Each node guarantees locally
serializable executions. In addition, FAS ensures
read consistency: it propagates refresh transactions
in a way that query-only transactions always see the
same version during their lifetime. This has to be
handled with care because with FAS, the router can
send each query of a read-only transaction to a dif-
ferent OLAP node. Routing of queries of the same
transaction to different cluster nodes is beneficial be-
cause of caching effects [22].

Freshness as Quality-of-Service. Next to guar-
anteeing serializability, freshness-aware scheduling
aims at improving query response time. The idea
is to introduce freshness of data as new Quality-of-
Service parameter for transaction processing. This
should allow to explicitly trade freshness of data ac-
cessed for query performance. The freshness limit
is an additional constraint for query routing. Only

update update Query,
1 m .
limit 0.9
freshness e freshness
10 = Ief,reshm_‘k‘,,,/‘,9_95

) - transactions
node,

Query,
limit 0.75

Query,
limit 0.5

= OLTP node -

freshness - freshness

T 08 s =~ 07
- 7hode, node,

OLAP nodes |

Figure 2: Principle of freshness-aware scheduling.

cluster nodes with a freshness above the given lower
bound will be considered during query routing. Con-
sequently, the higher the specified minimum fresh-
ness is, the smaller is the portion of the cluster to
which the corresponding query may be routed. In the
worst case, no node is available with the requested
degree of freshness, and the coordination middle-
ware must activate update propagation first. Hence,
although FAS follows a lazy primary-copy replica-
tion approach with deferred updates, it nevertheless
allows queries to access the most recent data.

Example 1. Figure 2 shows three queries with
different freshness limits. The first query asks for
data with a degree of freshness of at least 0.9. Only
the first node has a freshness index that meets this
limit and hence is the only possible target node. In
contrast, Query 2 is asking for data with a freshness
of at least 0.5. This freshness limit is met by all
cluster nodes. Hence, FAS is free to route Query 2
to any of the OLAP nodes. In Figure 2, the last node
is chosen to serve the query. |

Further Performance Issues. The coordina-
tion middleware prohibits read transactions on a node
while a refresh transaction executes. This is not a
limitation: Previous research has shown that OLAP
queries should be executed with a multiprogramming
level of one per node in order to avoid obstruction ef-
fects [21] (this of course does not apply to the degree
of multiprogramming at the OLTP node). Further-
more, even though a refresh transaction temporarily
blocks one node, query evaluation still takes place in
parallel on the remaining OLAP nodes. This is be-
cause it is unlikely that refreshes of all nodes of a
large cluster happen at the same time.

Another important optimization is to pool several
updates into a bulk refresh transaction in order to
minimize the slowdown of query performance. It
executes much faster than individual refresh transac-
tions [12]. The reason is that the system does commit
processing only once (with the same effect as group
commit). However, for ease of presentation, we will
leave this last optimization aside until Section 3.4.

3.3 Guaranteeing Correctness and Freshness

FAS has to guarantee that (1) refresh transactions are
executed on all OLAP nodes in the same serialization
order as the original update transactions on the OLTP
node, and (2) all queries of a read transaction access
data with the same freshness. To show formally that
FAS meets these requirements, we rely on a two-
layered open-nested transaction model [23]: Each
global client transaction ¢ consists of a set of SQL ac-
tions, which are executed as separate (flat) subtrans-
actions in one component DBMS. Refresh transac-
tions are subtransactions of a (global) update trans-
action. The benefit is that update and refresh transac-
tions execute and commit independently, while still
ensuring transactional guarantees from the perspec-
tive of the client. FAS keeps track of the propaga-
tion of updates, i.e., which refresh transactions are
already done and which ones remain to be activated.

Figure 3 illustrates this. A global update transac-
tion ¢ is submitted by a client. First, its subtransac-
tion ¢, is executed on the the OLTP node cy. After
commitment of this first subtransaction, decoupled
refresh transactions ry ¢, , . . ., T, propagate the up-
dates to all replicas. They typically start at different
times (cf. Section 3.6), so that the cluster as a whole
is not blocked. Read-only transactions are also de-
composed into subtransactions and routed to one or
more OLAP nodes.

This layered approach helps to define what "up-to-
dateness’ means, and to ensure that clients see data
of the specified degree of freshness. FAS defines
‘up-to-dateness’, i.e., freshness 1, as the state of the
OLTP node at the point in time when the first query
of aread transaction is started. When an OLAP trans-
action wants freshness 1, FAS first propagates all up-
dates committed before this point in time to the target
node. FAS ensures that this is done in the serializa-
tion order of the OLTP node. This order is known to
the coordination middleware if ¢y provides commit-
order serializability [5]. If this is not the case', the
coordination middleware must enforce a certain seri-

IFor example, Oracle uses a protocol called snapshot isolation
which does not provide commit-order serializability.

t

N T

t r

r

L1 sel(C,,) ins(O,) ... ins(Ly) ins(O,,) ins(L;) === ins(O,) ... ins(L,,)
/SN /N /N /SN /N /N /N
L r@ r(b) rc) wc) rz w(z) r(c) w(c) r(z) w(z) rc) w(c) r(z) w(z)

0

| node c, | [

node C — ——— node C——

Figure 3: Conceptual layered transactions with FAS.

alization order, e.g., by using a ticket mechanism or
a locking protocol.

Next to the refreshment of nodes with transac-
tional guarantees, FAS encompasses freshness-based
routing of queries. In extension of traditional trans-
action models, FAS allows clients to specify a fresh-
ness limit f; per read-only transaction for the data
accessed. This means that transactions need not ac-
cess the most up-to-date version of the warehouse but
a version which meets the freshness limit. The impli-
cations to correctness are that queries accessing stale
data are serialized before update transactions which
have already committed but have not been propa-
gated to the query’s target node so far.

This requires that refresh and query transactions
are correctly serialized on the various nodes. In par-
ticular, FAS must ensure that all queries of a read-
only transaction are accessing OLAP nodes with the
same degree of freshness. This is done similarly to
multiversion concurrency control [3]. FAS maps the
actions, i.e., the individual queries of a read-only
transaction, onto actions on some specific replica
version. Note that the freshness of target node im-
plicitly defines the version of the accessed data item.
The reason is that each individual cluster node is just
a one-version component, even though the cluster is
a multi-version system.

3.4 FAS Protocol

In the following, we present the actual FAS protocol.

Timestamps. Let C be a cluster of databases,
C = {co,c1,-..,cn}, with ¢g being the OLTP node,
and let f; be the freshness limit of a read-only trans-
action. In order to implement the delay freshness
metric, transactions are assigned a unique timestamp,
denoted by 7(t). Furthermore, FAS assigns time-
stamps to cluster nodes, denoted by 7(¢;). The time-
stamp of the OLTP node is the commit time of the
latest update transaction. The timestamp of an OLAP
node is set by each bulk refresh transaction. It sets
the timestamp to the latest timestamp of the update
transactions whose updates it propagates. Finally,

the scheduler assigns to a read transaction the fresh-
ness of the node accessed by its first query, denoted
by ff,, in order to ensure read consistency (cf. Algo-
rithm 3.1, line 20).

Scheduling and Routing. Freshness-aware
scheduling serializes read and refresh transactions
on the OLAP cluster using a multiversion timestamp
ordering approach: FAS transforms each action a;
from the input queue into a subtransaction on some
specific versioned replica, based on the timestamp
and freshness limit of the transaction. In more detail,
it works as follows:

foreach a; in queue loop

/1l initial set of candidate nodes?
if a; is the first of t¢; then
candidates:={c|c € C,c# co : f(c) >= fi,}+
Il if candidates =0 = activate refresh
else
candidates:={c|c € C,c# co : f(c) = ff1,};
if candidates = () then Abort(t;) end if
end if

/1 nodes not currently refreshed?
choices := { ¢ | ¢ € candidates
: node ¢ not refreshing };

if (choices # 0) then
//router chooses target node
Ctarget := Router.Choose(choices,a;);
/1 remenber accessed freshness
ﬁtti = f(Ctarget)
/] start subtransaction
StartSubtransaction(a;, Ctarget) 3
RemoveEntry(queque, a;);

else if waiting_time(a;) > limit then
/1 activate refresh of ol dest node
/1l and start a; on refreshed node

end if

// an action remains in the input queue

// until a suitable target is available
end loop
[N = c; is idle = activate refresh

Algorithm 3.1: FAS Protocol.

0NN AW~

LWL WWRNNEDNEDNRNE S — === — = O
DR 2SR IR~ 0O ARNE DR — O

The scheduler iterates through the input queue
and checks for each action if possible target nodes
are available. This means that the nodes must meet
the transactions freshness limit (cf. lines 4-10) and
must not be currently offline due to an active refresh
(cf. lines 13 and 14). The actual choice of the tar-
get node is left to the router (cf. line 18). The ob-
jective of the router is to identify the node where the
given query will evaluate fastest. [22] has already de-
scribed suitable routing algorithms, hence we do not
deal with the details of the router in this paper.

Finally, the current action a; is started as sub-
transaction on the target node chosen (line 22) and
removed from the input queue (line 23). It may hap-
pen that the scheduler cannot ensure read consistency
because all nodes have been refreshed already. If
this is the case, the corresponding read transaction
is aborted (line 9). However, a straightforward ex-
tension of FAS that does some bookkeeping which
versions are still needed could avoid this.

Update Propagation. If needed, the scheduler
activates update propagation (cf. lines 6, 25, and 33).
We consider different variants of update propagation
(cf. Section 3.6). All of them refresh each OLAP
node separately, and they refresh the oldest node, i.e.,
the node with the lowest freshness index. The re-
fresher that is part of the coordination middleware
executes all committed updates which have not been
propagated to the this node as one bulk refresh trans-
action. This is an important performance optimiza-
tion, as compared to executing separate refresh trans-
action. Bulk refresh transactions are an extension of
the layered transaction model as discussed in Sec-
tion 3.3. However, as the refresher composes them in
the serialization order of ¢, correctness is still guar-
anteed.

Ensuring atomicity and recovery naturally im-
poses a certain overhead, quantified in [4]. Global
recovery cannot be shifted to the component DBMS,
but the coordination middleware must provide it. In
order to ensure atomicity of update transactions, the
logger at the middleware layer (cf. Figure 1) per-
forms bookkeeping of the refresh transactions. In
addition, the OLTP node keeps a local log of com-
mitted updates. We implemented this local log us-
ing database triggers which add entries to a log table
for each successful update. The coordination mid-
dleware can derive from both local and global log
the state of update propagation throughout the clus-
ter. This allows to do a forward recovery in case of
a failure of the coordinator by continuing with miss-
ing refresh transactions. A further performance op-
timization is that the refresher caches all committed
but not completely propagated updates in main mem-
ory to avoid reading the log of the OLTP node for
each refresh.

3.5 Scalability and Availability

An important issue is to ensure that our coordination
middleware does not become a bottleneck even for
large cluster sizes. The focus of this current work
is to provide the functionality of FAS, i.e., global
correctness and freshness guarantees, and to experi-
mentally explore its performance characteristics for
a large cluster (128 nodes). In this study, several
parts of the coordination middleware are centralized.
For example, the scheduler and its state information
cannot be distributed as it needs to do bookkeeping,
e.g., of the degrees of freshness of the cluster nodes.
There is also a central input queue in order to allow
for query routing.

Other components of the coordination middle-
ware can be distributed more easily. For example,
scheduler, refresher, and logger do not have to run on
the same node. The refresher can monitor committed
update transactions on the OLTP node independently
of the scheduler. It is activated by the scheduler just
when needed. It then executes a bulk refresh transac-
tion in parallel to the ongoing scheduling of queries
on non-refreshing OLAP nodes. The global logger
just keeps track of the successful update propagation,
which is again widely independent of scheduling and
routing. Our implementation of FAS further reduces
synchronization of these middleware components by
using multithreading. The evaluation will show that
our coordination middleware indeed scales with in-
creasing OLAP workloads for the considered cluster
sizes of up to 128 nodes.

Auvailability has not been a topic of this current
work. However, fail-safety can be easily increased
by deploying hot-standby techniques for the ma-
chines running the coordination middleware. As
FAS makes heavy use of replication, fail-safety at
the cluster level itself is already very high.

3.6 Refreshment Strategies for FAS

So far, we have addressed the questions Zow schedul-
ing can be accomplished. In this section, we con-
centrate on performance aspects of freshness-aware
scheduling, e.g., when the refreshment of cluster
nodes starts. We discuss different variants for update
propagation which should have an effect on perfor-
mance. The general intention is to hinder queries as
little as possible. This can be achieved by varying
the frequency of update propagation. This depends
on the strategy when the scheduler starts deferred
refresh transactions. We study three basic variants:
asap, on-demand, and 1-idle.

asap The standard approach to update propagation
is to propagate changes as soon as possible [17].
With such a refreshment strategy, cluster nodes
will be refreshed between queries. In other

words, whenever a query finishes and updates
have occurred in the meanwhile, the execution
of a refresh transaction is started on the corre-
sponding cluster node. The freshness index is
not used at all. asap will serve as a reference
point for the evaluation.

on-demand defers refreshment until there is a read
transaction with a freshness limit that no node
can meet. This is the case if its freshness limit
is higher than the maximum of the freshness in-
dices of the OLAP nodes. A refresh transaction
will then start on the cluster node with the low-
est freshness index.

m-idle defers refresh transactions until m cluster
nodes have become too old so that they cannot
fulfill the freshness requirements of any query
in the input queue and hence become idle. The
actual number of nodes which have become too
old is a parameter of this strategy. However,
it turned out that /-idle performs best in most
cases [20], and we will not look at the case of
m > 1 in the following.

An asap activation of refresh transactions is the
state-of-the-art method for lazy replication [17]. The
intention is to propagate updates through the clus-
ter as fast as possible. In contrast, the two other ap-
proaches defer update propagation as long as queries
are still satisfied with the freshness of data provided
by the cluster. They differ in the criterion when to
refresh a cluster node. With on-demand, refresh-
ment may only be activated by a read transaction with
a freshness limit above the freshness indexes of all
OLAP nodes (cf. Algorithm 3.1, line 6). /-idle defers
the activation even longer until one node has become
so old that it cannot be used even for the read trans-
actions with the lowest freshness limit — and hence
becomes idle even if there are queries waiting in the
input queue (cf. Algorithm 3.1, line 33). However,
FAS ensures that no query is waiting longer than a
given time limit (cf. line 24). This avoids starvation.

Example 2. Consider a cluster consisting of
two nodes, ¢ and co. ¢ has freshness 0.85, and ¢
has freshness 0.7. The input queue of the coordinator
contains three read transactions tq, to, and t3 with
freshness limits 0.8, 0.9, and 0.6, respectively.
on-demand will start ¢; at node cq, but leave ¢ and
ts waiting in the input queue. The reason is that 5 is
asking for a degree of freshness not provided by the
cluster. on-demand therefore takes node co offline
in order to refresh it first, even though ¢35 could be
served. With I-idle, the cluster nodes serve ¢; and
t3, as the freshness of ¢y still meets the limit of ¢3. Wl

1-idle prefers queries with low freshness limits.
This is because it waits with update propagation un-

til even those queries cannot use any node any more.
In contrast, one might expect that the on-demand
strategy leads to lower response times than /-idle for
queries asking for more up-to-date data. However,
the evaluation will show that the opposite is true.

4 Evaluation

In the following, we are interested in the performance
characteristics of FAS. We have implemented a full-
fledged prototype, i.e., the coordination middleware,
and have conducted an extensive experimental eval-
uation using our prototype on a cluster of 128 nodes.
We have started by comparing different refreshment
strategies. Based on the results, we have further eval-
uated the overhead and scalability of freshness aware
scheduling. Finally, we have also compared FAS to
synchronous updates.

4.1 Evaluation Setup

The prototype comprises the cluster of databases, a
designated OLTP node, the coordinator, and a client
simulator. The evaluation has been conducted on a
cluster of databases consisting of 128 PCs (1 GHz
Pentium III, 256 MBytes RAM, and two SCSI hard-
disks) each running Microsoft SQL Server 2000 un-
der Windows 2000 Advanced Server. We generated
the databases according to the TPC-R benchmark
with a scaling factor 1 (with indexes about 2 GBytes).
The OLTP node, the global log, and the client sim-
ulator are Pentium IT 400 MHz machines with the
same software configuration. The coordinator runs
on a separate PC with two 1GHz Pentium III and
512 MBytes RAM. All nodes are interconnected by
a switched 100 MBit Ethernet.

4.2 Influence of Refreshment Activation

First, we are interested in how the refreshment strate-
gies influence update and query performance and ac-
tually, which refreshment strategy outperforms the
others. Hence, we are varying the refreshment ac-
tivation strategy.

In order to compare these three alternatives for
lazy replication refreshment, we used a workload
of 10 concurrent update streams and 64 concurrent
query streams, denoted as (10, 64). The updates cor-
responded to the TPC-R refresh function RF1, while
the query streams encompassed randomized TPC-R
queries. In this series of experiments, the cluster con-
sisted of 32 nodes plus one dedicated OLTP node
with a multiprogramming level of ten. We measured
the performance of the different refresh activation
methods with different mean freshness limits of the
query streams. The clients used mean freshness lim-
its between 0.6 and 1. A decrease of the freshness

3000 15
B0.6 007 mo8 009 O z 0.6 007 M0.8 009 Of

. =)

3 B] [e]

o - - 4

< 2000 o 1.0 85% 85%

[0] =

o ©

3 e

1000 3 0.5 1

o S
3
o
£

0 \ \ \ 0.0
no updates asap on-demand 1-idle asap on-demand 1-idle
(a) Query Throughput (b) Query Throughput scaled to query-only workload
200 2.0
00.6 007 m0.8 0.9 O1 00.6 007 m0.8 0.9 O1
=
150 A Syg

- 9% o

ﬁ ,S 152% 156% : =

S 100 - T 15

g =
9]

50 - I S$13 (
[&]
8 110% 1109
0 T T T 1 .0 T
no updates asap on-demand 1-idle asap on-demand 1-idle

(c) Query Mean Response Time

(d) MRT scaled to MRT of query-only workload

Figure 4: Influence of refreshment policy on performance of freshness-aware scheduling.

index of 0.1 corresponded to a maximal allowed re-
freshment delay of 5 minutes. The length of the ob-
servation period was 20 minutes.

Figure 4 contains the respective figures. It shows
that the asap activation approach leads to mean re-
sponse times around 50% higher than without any
updates. Throughput also decreases to about 60% of
the one without updates. Both “lazy” approaches to
refreshment activation, /-idle and on-demand, yield
a much better performance. For queries with a low
freshness limit like 0.6 in particular, they lead to
much improved mean response times and through-
puts. They reach about 85% of the original through-
put without updates. Especially /-idle slows down
queries with a low freshness limit only slightly. Fig-
ure 4(d) also shows that our original idea to trade
up-to-dateness of the accessed data for query per-
formance actually works: With /-idle, querying data
with a freshness limit of 0.6 has about 50% less slow-
down than asking for up-to-date data.

An unexpected effect is that on-demand yields a
slightly worse performance than /-idle, especially
with mean freshness limits between 0.8 and 0.9. For
example, clients asking for data with a minimum
freshness of 0.9 with on-demand end up with

a longer response time as if they would ask for
up-to-date data! This does not happen with /-idle.

120%

00.6 00.7 m0.8 00.9 O1
100% - p = — N — o

on

80% 1

60% -

40% H = = =

average cluster utilizati

20% -

00/0 T T T

no updates asap on-demand 1-idle

Figure 5: Cluster usage of refreshment policies.

The reason is that with on-demand activation the
coordinator is satisfied if there is at least one node of
the cluster which is fresh enough to answer an incom-
ing query. Consequently, read transactions with high
freshness limits often can use only a small “fresh”
subset of the actual cluster while queries with smaller
limits have more choices. This means that the higher
the mean freshness limit, the more queries are com-
peting for a small number of fresh cluster nodes. Fig-
ure 5 illustrates the mean cluster utilization with the

12000 2.00
- no updates - 0.6 + 0.7 < 0.8 = 0.9 = 1 —-no updates <= 0.6 0.7 -<0.8 = 0.9 =1
10000 » =
5 g 1.50 1
2 8000 by
GLJ e = .3 ;.3 —Aa
S 6000 | 3 1.00 1
a ©
2 13
& 4000 f @
& £ 0.50 |
2000 =
0 0.00
4 8 16 32 64 128 4 8 16 32 64 128
number of OLAP nodes number of OLAP nodes
(a) Query Throughput (b) Query Mean Response Time
12 1000
@0.6 007 M08 009 O1 - - mno updates 0.6 M0.7 0.8 D09 W1
© i
g 10 2 800 -
g 5 g
@]
Ny @ 600 N
Rl | RIEEY RREAY HIES A -
x = _
° % 400
(0] 4 [%]
g g I
[0
S 24 % 200 I 1
0 += o M 1{ Fﬂ
4 8 16 32 64 128 ‘ ‘

number of OLAP nodes

(c) Update Throughput

4 8 64 128

16 32
number of OLAP nodes

(d) Refresh Transactions

Figure 6: Influence of freshness requirement on query and update performance.

different methods. With the /-idle strategy, it is al-
ways 100%, while with on-demand more and more
cluster nodes remain unused. This effect does not
show when all clients ask for freshness 1, so that ev-
ery transaction activates a refresh. The effect also
does, by definition, not appear with /-idle activation,
which takes the converse approach: Here, it will not
happen that any node remains idle. This would mean
that the node has become too old for all active trans-
actions in the system, and hence it is refreshed.

4.3 Influence of the Freshness Parameter

Let us further investigate the influence of the fresh-
ness parameter on performance. In the following,
FAS always deploys I-idle refreshment activation.
We have used a dynamic workload of (10,2n) for
these experiments, i.e., ten update streams concur-
rently executed with twice as many querying clients
as there are nodes in the cluster (n = size of cluster).

We again varied the mean freshness requested by
read transactions from 0.6 up to 1. The results are
shown in Figure 6. We see that the slowdown of
queries by the concurrent update stream for /-idle is

around 10% up to 60% with regard to mean response
time as compared to the no-update case (0,2n). If
clients issue queries with mean freshness limit 0.6
(which means at most 20 minutes old), they obtain
the results about 30% faster, compared to a requested
freshness of 1. This is exactly the effect freshness-
aware scheduling is targeting on: trading data ’up-
to-dateness’ for query performance.

The results also nicely show that there is no slow-
down with increasing cluster size, as it would be the
case with synchronous updates: we were doubling
the number of clients and the cluster size at the same
time, and mean response time did not change, but
query throughput doubled. This means that at least
up to 128 nodes, freshness-aware scheduling scales
linearly with increasing cluster size.

The result is the same with regard to update per-
formance. Figure 6(c) illustrates this. The through-
put achieved by ten concurrent update streams re-
mains constant, even with a large OLAP cluster of
up to 128 nodes. Obviously, the coordination mid-
dleware can keep up with the updaters and the in-
creasing OLAP workload (on 128 nodes, 256 query

400

Eno updates [sync. updates [OFAS

lwaan

number of OLAP nodes

queries per hour
n W
o o
o o
L L

_

o

o
I

(a) Query Throughput

pdates per hour

3500
3000 -
2500 -
2000 —
1500 -
1000 —

500 —

—

OFAS

Osync. updates

0 —
1 2 4 8
number of OLAP nodes

(b) Update Throughput

Figure 7: Performance comparison of FAS and synchronous updates.

streams are active) without a slowdown for either
queries or updates. At the same time, the CPU load
of the scheduler with 128 nodes was only 30% in av-
erage. All this is the result of our efforts to avoid a
bottleneck (cf. Section 3.5).

Figure 6(d) on the preceding page illustrates the
reason for the performance gains of lower freshness
limits. It shows how many refresh transactions are
started on some OLAP node for the different mean
freshness limits requested. Clearly, the larger the
cluster or the higher the mean freshness requested,
the more often updates are propagated throughout the
cluster. Conversely, the smaller the freshness limit
requested by clients the smaller is the overhead for
refreshment.

4.4 Comparison with Synchronous Updates

In the following, we are interested in a comparison
of FAS with a standard approach to consistent data
with up-to-date guarantees. Although asynchronous
replication approaches can ensure serializability, e.g.
[1, 6], none of them can also guarantee access to
up-to-date data. For this reason, we are comparing
FAS with synchronous update propagation. A syn-
chronous updating strategy executes updates on all
replicas within the same transaction. Typically, a two
phase commit protocol (2PC) guarantees atomicity.

To carry out this comparison, we deployed a (1, n)
workload. It comprises one updater and as many
readers as cluster nodes. FAS used the /-idle refresh-
ment activation strategy. In order to be comparable to
synchronous updating, which keeps all replicas up-
to-date, all clients were requesting freshness 1 in the
case of FAS. We also used only up to eight OLAP
nodes. The reason why we used a smaller cluster
and workload than before will become clear when
we look at the results.

FAS outperforms synchronous updates both with

regard to query and update throughput. Synchronous
updates slow down significantly with increasing clus-
ter size. Figure 7 shows that on eight nodes only
55% of the query throughput as without updates is
achieved. On the other hand, FAS still achieves 91%
of the non-update throughput on eight nodes, even
though the readers asked for a freshness of 1, i.e., up-
to-date data! This is much faster than in the previous
experiments, but the workload is also much smaller.

The differences are quite dramatic with regard
to update performance. FAS allows for an update
throughput on the OLTP node of about 3000 up-
date transactions per hour, each transaction consist-
ing of five insert statements on average. The up-
date throughput stays stable over the cluster size.
In contrast, with synchronous updates each update
transaction must obtain exclusive locks on all clus-
ter nodes. Consequently, queries significantly slow
down updates. The result is an extremely small up-
date throughput of around a hundred update trans-
actions per hour. FAS is more than one magnitude
better. — Summing up, this experiment illustrates
the following: FAS shows the superior performance
of lazy replication for this special case where each
client requests freshness 1. Furthermore, it is trans-
parent that FAS propagates updates asynchronously.
Each client accesses up-to-date data, as in the case
with synchronous updating.

5 Related Work

FAS provides OLAP clients with constant perfor-
mance, one-copy serializability, and freshness guar-
antees. This even holds if clients access up-to-date
data. The design of a protocol with such characteris-
tics is not obvious. It is well-known that synchronous
updates do not scale with the cluster size [10]. But
although asynchronous replication management has
been intensively studied in the past, only few ap-

proaches actually guarantee a correct, serializable ex-
ecution [1, 6]. They place some restrictions on the
data placement or commit processing. [1] presents
a serializable epidemic replication protocol. It relies
on a distributed atomic commit protocol. This rules
out this approach for large clusters. [6] avoids this —
but only for certain configurations of primary-copy
replication.

At the first glance, FAS is a restricted case of [6].
For instance, the protocol in [6] does not rely on the
assumption that there is a distinguished coordination
layer. Our current solution in turn contains a distin-
guished coordinator, and we assume that all requests
are submitted to it, instead of going directly to in-
dividual nodes. This of course requires that it does
not become a bottleneck. Our evaluation based on
a full implementation has shown that this is indeed
not the case even for a large cluster of 128 nodes.
Actually, FAS benefits from this coordination layer,
and can be more flexible than [6]: First, FAS al-
lows that queries of the same read transaction are
routed to different cluster nodes as long as they are
read consistent. Second, FAS incorporates freshness
guarantees. The combination of scalability, correct-
ness, and freshness-awareness as Quality-of-Service
is novel to replication management.

Online Warehouse Update Algorithms. FAS
also goes beyond previous approaches to warehouse
maintenance [19, 12, 11] that have focused solely on
improving performance of update propagation. They
neither have made the notion of freshness of data ex-
plicit, nor do they consider global correctness. While
the cluster gives rise to further natural optimizations
like intra-query parallelism or the use of more than
one OLTP node with the data partitioned, such issues
are orthogonal to our current work.

Approximative Query Evaluation. Our cur-
rent concern is the design and assessment of the
middleware, apart from physical design issues at the
component level. Approaches like [7] propose data
compression techniques that allow to trade result
quality for query evaluation time. Broadly speak-
ing, such approaches have the same objective, i.e.,
allowing the user to waive accuracy of results in ex-
change for better performance. But they are orthog-
onal and complement each other very well: different
cluster nodes could hold different compressed ver-
sions of the database. The coordination middleware
could then take into account that more sophisticated
compression schemes typically induce higher main-
tenance costs.

[15] combines cache staleness and approxima-
tive query evaluation. The approach allows users to
supply a quantitative precision constraint along with
each query. The system then evaluates the query on
both locally cached data and the master copy data in

order to meet the precision constraint. In contrast,
FAS aims as trading result up-to-dateness for query
performance, and furthermore guarantees clients to
access a consistent view of the database.

Commercial Cluster Products. Cluster of PCs
have become an attractive hardware platform for
commercial database vendors, too. While Oracle 9i
Real Application Cluster follows a variant of shared-
disk approach [16], most products such as IBM DB2
UDB EEE or Microsoft SQL Server 2000[18, 13] fa-
vor a shared-nothing architecture. They concentrate
on data partitioning as physical design and efficient
distributed, parallel query evaluation, typically for
OLTP only. However, these systems do not address
the problem of online warehouse updates. For ex-
ample, the available replication mechanisms exploit
either standard 2PC or full asynchronous replication
protocols without any freshness guarantees.

6 Conclusions

Most data warehouses nowadays offer a compromise
between freshness of data and maintenance costs. We
think that this is a restriction, and our idea has been
to allow to explicitly trade freshness of data for query
performance. But at the same time, we do not want
to sacrifice correctness. The architecture investigated
here is a cluster of OLAP-components, with a mid-
dleware layer on top. The degrees of freshness of
the cluster nodes may vary. Clients submit a query
together with an explicit freshness limit as a Quality-
of-Service parameter.

Our contribution is the design, implementation,
and evaluation of a coordination middleware that
schedules and routes updates and queries to clus-
ter nodes. Its core is a new protocol called FAS
(Freshness-Aware Scheduling) with the following
characteristics: (1) The requested freshness limit of
queries is always met, and (2) data accessed within
a transaction is consistent, independent of its fresh-
ness. In particular, FAS can efficiently serve clients
asking for up-to-date data. FAS makes use of the dif-
ferent degrees of freshness of the OLAP nodes in or-
der to serve such queries which agree to access stale
data sooner than queries asking for the latest data.

In a quantitative evaluation using a full-fledged
prototype, we have investigated various alternatives
to cluster refreshment and have compared FAS to
both synchronous and asynchronous update propaga-
tion strategies. We could show the following impor-
tant points:

e Our middleware does not become a bottleneck
even for large clusters; up to 128 nodes, it al-
lows a linear scaleup with regard to query re-
sponse times while at the same time does not
slowdown OLTP.

o Freshness-aware scheduling effectively allows
to trade freshness of data for query response
time; for example, response times of clients
with a freshness limit 0.6 (data at most 20 min-
utes old) are about 30% faster than those of
clients asking for up-to-date data.

e Update throughput is faster by more than an or-
der of magnitude than with state-of-the-art syn-
chronous update propagation, even if all clients
are served with up-to-date data.

These performance improvements are achieved only
by a sophisticated interleaving of updates and
queries. A natural extension would be to have cluster
nodes with different physical design. But even with-
out such extensions, our results are positive. We con-
clude that freshness-aware scheduling is a promis-
ing approach to cope with high workloads of OLAP
queries with different freshness requirements.

Acknowledgements. This work is part of the
PowerDB cluster project currently conducted by the
database research group at ETH Zurich. This project
is partially sponsored by Microsoft Research.

References

[1] D. Agrawal, A. El Abbadi, and R. Steinke. Epidemic
algorithms in replicated databases. In Proceedings of
the 16th ACM Symposium on Principles of Database
Systems, May 12-14, Tucson, Arizona, 1997.

R. Alonso, D. Barbara, and H. Garcia-Molina. Data
caching issues in an information retrieval system.
ACM Transactions on Database Systems (TODS),
15(3):359-384, 1990.

P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, 1987.

K. Bohm, T. Grabs, U. Rohm, and H.-J. Schek.
Evaluating the coordination overhead of synchronous
replica maintenance in a cluster of databases. In Pro-
ceedings of the 6th Int. Euro-Par Conference, Aug. 29
- Sept. 01, Munich, Germany, pages 435-444, 2000.

(2]

(3]

(4]

[5] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz,
and A. Silberschatz. On Rigorous Transaction
Scheduling. [EEE Transactions on Software Engi-

neering, 17(9):954-960, September 1991.

[6] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols
for replicated databases. In Proceedings of SIGMOD

1999, June 1-3, Philadephia, USA, 1999.

K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using
wavelets. In Proceedings of 26th VLDB Conference,
September 10-14, Cairo, Egypt, 2000.

(71

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]
(17]

(18]

[19]

[20]

(21]

(22]

(23]

J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of
the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, Dallas, Texas,
USA, pages 117-128, 2000.

R. Gallersdorfer and M. Nicola. Improving perfor-
mance in replicated databases through relaxed co-
herency. In Proceedings of 21th VLDB Conference,
September 11-15, Zurich, Switzerland, 1995.

J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proceedings
of the 1996 ACM SIGMOD Conference, June 4-6,
Montreal, Quebec, Canada, pages 173—182, 1996.
W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and
J. Widom. Performance issues in incremental ware-
house maintenance. In Proceedings of 26th VLDB
Conference, September 10-14, Cairo, Egypt, 2000.
A. Labrinidis and N. Roussopoulos. Reduction of
materialized view staleness using online updates.
Technical report, University of Maryland, 1998.
http://www.microsoft.com/sql/default.asp

M. Oguchi and M. Kitsuregawa. Parallel data min-
ing on ATM-connected PC cluster and optimization
of its execution environments. In Proceedings of the
15 IPDPS Workshops, Cancun, Mexico, 2000.

C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In Proceedings of the 26th VLDB
Conference, September 10-14, 2000, Cairo, 2000.
http://otn.oracle.com/products/oracle9i/

E. Pacitti, P. Minet, and E. Simon. Fast algorithms for
maintaining replica consistency in lazy master repli-
cated databases. In Proceedings of 25th VLDB Con-
ference, September 7-10, Edinburgh, Scotland, 1999.
IBM White Paper. IBM DB2 universal database on
IBM Netfinity and GigaNet cLan clusters. Technical
report, IBM Corporation, April 1998.

D. Quass and J. Widom. On-line warehouse view
maintenance. In Proceedings of the 1997 ACM
SIGMOD Conference, May 13-15, Tucson, Arizona,
pages 393-404, 1997.

U. Rohm. Online Analytical Processing in a Cluster
of Databases. PhD thesis, ETH No. 14591, 2002.

U. Réhm, K. Bohm, and H.-J. Schek. OLAP query
routing and physical design in a database cluster. In
Proceedings of the 6th EDBT Conference, March 27-
31, Konstanz, Germany, 2000.

U. Rohm, K. Bohm, and H.-J. Schek. Cache-aware
query routing in a cluster of databases. In Proceed-
ings of the 17th ICDE Conference, April 2-6, Heidel-
berg, Germany, pages 641-650, 2001.

G. Weikum and H.-J. Schek. Concepts and appli-
cations of multilevel transactions and open nested
transactions. In A. K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications,
pages 515-553. Morgan Kaufmann, 1992.

